Mostrar el registro sencillo

dc.contributor.authorBayarri Cayón, Vicente
dc.contributor.authorPrada Freixedo, Alfredo
dc.contributor.authorGarcía, Francisco
dc.contributor.authorDíaz González, Lucía María
dc.contributor.authorHeras Martín, Carmen de las
dc.contributor.authorCastillo López, Elena 
dc.contributor.authorFatás Monforte, Pilar
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-05-12T06:39:27Z
dc.date.available2023-05-12T06:39:27Z
dc.date.issued2023
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/10902/28849
dc.description.abstractRock art offers traces of our most remote past and was made with mineral and organic substances in shelters, walls, or the ceilings of caves. As it is notably fragile, it is fortunate that some instances remain intact-but a variety of natural and anthropogenic factors can lead to its disappearance. Therefore, as a valuable cultural heritage, rock art requires special conservation and protection measures. Geomatic remote-sensing technologies such as 3D terrestrial laser scanning (3DTLS), drone flight, and ground-penetrating radar (GPR) allow us to generate exhaustive documentation of caves and their environment in 2D, 2.5D, and 3D. However, only its combined use with 3D geographic information systems (GIS) lets us generate new cave maps with details such as overlying layer thickness, sinkholes, fractures, joints, and detachments that also more precisely reveal interior-exterior interconnections and gaseous exchange; i.e., the state of senescence of the karst that houses the cave. Information of this kind is of great value for the research, management, conservation, monitoring, and dissemination of cave art.es_ES
dc.description.sponsorshipThis research was funded by the Department of Innovation, Industry, Tourism and Trade of the Regional Government of Cantabria in the context of aid to encourage industrial research and innovation in companies, project “SImulador Climático del Karst de cuevas de especial valor. (SICLIKA),” grant number 2016/INN/25.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceRemote Sensing, 2023,15(4),1087es_ES
dc.subject.otherCultural heritagees_ES
dc.subject.otherRock artes_ES
dc.subject.otherGeomaticses_ES
dc.subject.otherData processinges_ES
dc.subject.other3D terrestrial laser scanneres_ES
dc.subject.otherGlobal navigation satellite systemses_ES
dc.subject.otherUAV photogrammetryes_ES
dc.subject.otherGround penetrating radares_ES
dc.subject.otherCultural managementes_ES
dc.subject.otherMappinges_ES
dc.titleIntegration of remote-sensing techniques for the preventive conservation of paleolithic cave art in the karst of the Altamira cavees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/rs15041087es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/rs15041087
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license