dc.contributor.author | Segura Sala, José Javier | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-05-10T15:44:13Z | |
dc.date.available | 2023-05-10T15:44:13Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.other | PGC2018-098279-BI00 | es_ES |
dc.identifier.other | PID2021-127252NB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/28799 | |
dc.description.abstract | The best bounds of the form B(α, β, γ, x) = (α + ✓β2 + γ2 x2)/x for ratios of modified Bessel functions are characterized: if α, β and γ are chosen in such a way that B(α, β, γ, x) is a sharp approximation for Φν (x) = Iν−1(x)/Iν(x) as x → 0+ (respectively x → +∞) and the graphs of the functions B(α, β, γ, x) and Φν (x) are tangent at some x = x∗ > 0, then B(α, β, γ, x) is an upper (respectively lower) bound for Φν (x) for any positive x, and it is the best possible at x∗. The same is true for the ratio Φν (x) = Kν+1(x)/Kν (x) but interchanging lower and upper bounds (and with a slightly more restricted range for ν). Bounds with maximal accu- racy at 0+ and +∞ are recovered in the limits x∗ → 0+ and x∗ → +∞, and for these cases the coefficients have simple expressions. For the case of finite and positive x∗ we provide uniparametric families of bounds which are close to the optimal bounds and retain their confluence properties. | es_ES |
dc.description.sponsorship | The author acknowledges support from Ministerio de Ciencia e Innovación, projects PGC2018-098279-BI00 (MCIU/AEI/FEDER, UE) and PID2021-127252NB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, UE) | es_ES |
dc.format.extent | 26 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | © 2023 The Author(s). | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Mathematical Analysis and Applications, 2023, 526(1), 127211 | es_ES |
dc.subject.other | Modified Bessel functions | es_ES |
dc.subject.other | Ratios | es_ES |
dc.subject.other | Best bounds | es_ES |
dc.title | Simple bounds with best possible accuracy for ratios of modified Bessel functions | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.jmaa.2023.127211 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.jmaa.2023.127211 | |
dc.type.version | publishedVersion | es_ES |