Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.authorGrossmann Epper, Ignacio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-05-04T08:34:55Z
dc.date.available2023-05-04T08:34:55Z
dc.date.issued2023-06
dc.identifier.issn0098-1354
dc.identifier.issn1873-4375
dc.identifier.otherPDC2021-120786-I00es_ES
dc.identifier.otherCTM2017-87850-R
dc.identifier.urihttps://hdl.handle.net/10902/28716
dc.description.abstractReverse electrodialysis (RED) is an emerging electro-membrane technology that generates electricity out of salinity differences between two solutions, a renewable source known as salinity gradient energy. Realizing full-scale RED would require more techno-economic and environmental assessments that consider full process design and operational decision space from the RED stack to the entire system. This work presents an optimization model formulated as a Generalized Disjunctive Programming (GDP) problem that incorporates a finite difference RED stack model from our research group to define the cost-optimal process design. The solution to the GDP problem provides the plant topology and the RED units´ working conditions that maximize the net present value of the RED process for given RED stack parameters and site-specific conditions. Our results show that, compared with simulation-based approaches, mathematical programming techniques are efficient and systematic to assist early-stage research and to extract optimal design and operation guidelines for large-scale RED implementation.es_ES
dc.description.sponsorshipThis work was supported by the LIFE Programme of the European Union (LIFE19 ENV/ES/000143); the MCIN/AEI/10.13039/501100011033 and “European Union NextGenerationEU/PRTR” (PDC2021–120786-I00); and by the MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (PRE2018–086454).es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputers and Chemical Engineering, 2023, 174, 108196es_ES
dc.subject.otherSalinity gradient energyes_ES
dc.subject.otherRenewable electricityes_ES
dc.subject.otherSuperstructure optimizationes_ES
dc.subject.otherNet present valuees_ES
dc.subject.otherLevelized cost of energyes_ES
dc.subject.otherGlobal logic-based outer approximation algorithmes_ES
dc.titleA generalized disjunctive programming model for the optimal design of reverse electrodialysis process for salinity gradient-based power generationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.compchemeng.2023.108196es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.compchemeng.2023.108196
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International