Mostrar el registro sencillo

dc.contributor.authorTumasyan, A.
dc.contributor.authorBrochero Cifuentes, Javier Andrés 
dc.contributor.authorCabrillo Bartolomé, José Iban 
dc.contributor.authorCalderón Tazón, Alicia 
dc.contributor.authorDuarte Campderros, Jorge 
dc.contributor.authorFernández García, Marcos 
dc.contributor.authorFernández Madrazo, Celia 
dc.contributor.authorFernández Manteca, Pedro José 
dc.contributor.authorGarcía Alonso, Andrea
dc.contributor.authorGómez Gramuglio, Gervasio 
dc.contributor.authorMartínez Rivero, Celso
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorMatorras Weinig, Francisco 
dc.contributor.authorMatorras Cuevas, Pablo 
dc.contributor.authorPiedra Gómez, Jonatan 
dc.contributor.authorPrieëls, Cedric
dc.contributor.authorRodrigo Anoro, Teresa 
dc.contributor.authorRuiz Jimeno, Alberto 
dc.contributor.authorScodellaro, Luca 
dc.contributor.authorVila Álvarez, Iván  
dc.contributor.authorVizán García, Jesús Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-05-02T11:04:30Z
dc.date.available2023-05-02T11:04:30Z
dc.date.issued2022
dc.identifier.issn1748-0221
dc.identifier.urihttps://hdl.handle.net/10902/28644
dc.description.abstractA new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τh ) that originate from genuine tau leptons in the CMS detector against τh candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τh candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τh to pass the discriminator against jets increases by 10–30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τh reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τh reconstruction method are validated with LHC proton-proton collision data at √ 𝑠�������� = 13 TeVes_ES
dc.format.extent53 p.es_ES
dc.language.isoenges_ES
dc.rightsAttribution 4.0 International. © 2022 CERN. Published by IOP Publishing Ltd on behalf of Sissa Medialabes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Instrumentation, 2022, 17, P07023es_ES
dc.subject.otherLarge detector systems for particle and astroparticle physicses_ES
dc.subject.otherParticle identification methodses_ES
dc.subject.otherPattern recognitiones_ES
dc.subject.otherCluster findinges_ES
dc.subject.otherCalibration and fitting methodses_ES
dc.titleIdentification of hadronic tau lepton decays using a deep neural networkes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1748-0221/17/07/P07023es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1088/1748-0221/17/07/P07023
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 International.  © 2022 CERN. Published by IOP Publishing Ltd on behalf of Sissa MedialabExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International. © 2022 CERN. Published by IOP Publishing Ltd on behalf of Sissa Medialab