• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Física Moderna
    • D15 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Física Moderna
    • D15 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-frequency point source detection with fully convolutional networks: Performance in realistic microwave sky simulations

    Ver/Abrir
    MultifrequencyPointS ... (1.551Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/28609
    DOI: 10.1051/0004-6361/202141874
    ISSN: 0004-6361
    ISSN: 1432-0746
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Casas González, José Manuel; González-Nuevo, Joaquín; Bonavera, Laura; Herranz Muñoz, DiegoAutoridad Unican; Suárez Gómez, Sergio Luis; Muñiz Cueli, Marcos; Crespo Iglesias, David; Santos Rodríguez, Jesús Daniel; Sánchez Rodríguez, María Luisa; Sánchez Lasheras, Fernando; Cos Juez, Francisco Javier de
    Fecha
    2022-02
    Derechos
    © ESO 2022
    Publicado en
    Astronomy and Astrophysics, 2022, 658, A110
    Editorial
    EDP Sciences
    Enlace a la publicación
    https://doi.org/10.1051/0004-6361/202141874
    Palabras clave
    Techniques: image processing
    Submillimeter: galaxies
    Cosmic background radiation
    Resumen/Abstract
    Context. Point source (PS) detection is an important issue for future cosmic microwave background (CMB) experiments since they are one of the main contaminants to the recovery of CMB signal on small scales. Improving its multi-frequency detection would allow us to take into account valuable information otherwise neglected when extracting PS using a channel-by-channel approach. Aims. We aim to develop an artificial intelligence method based on fully convolutional neural networks to detect PS in multi-frequency realistic simulations and compare its performance against one of the most popular multi-frequency PS detection methods, the matrix filters. The frequencies used in our analysis are 143, 217, and 353 GHz, and we imposed a Galactic cut of 30°. Methods. We produced multi-frequency realistic simulations of the sky by adding contaminating signals to the PS maps as the CMB, the cosmic infrared background, the Galactic thermal emission, the thermal Sunyaev-Zel’dovich effect, and the instrumental and PS shot noises. These simulations were used to train two neural networks called flat and spectral MultiPoSeIDoNs. The first one considers PS with a flat spectrum, and the second one is more realistic and general because it takes into account the spectral behaviour of the PS. Then, we compared the performance on reliability, completeness, and flux density estimation accuracy for both MultiPoSeIDoNs and the matrix filters. Results. Using a flux detection limit of 60 mJy, MultiPoSeIDoN successfully recovered PS reaching the 90% completeness level at 58 mJy for the flat case, and at 79, 71, and 60 mJy for the spectral case at 143, 217, and 353 GHz, respectively. The matrix filters reach the 90% completeness level at 84, 79, and 123 mJy. To reduce the number of spurious sources, we used a safer 4σ flux density detection limit for the matrix filters, the same as was used in the Planck catalogues, obtaining the 90% of completeness level at 113, 92, and 398 mJy. In all cases, MultiPoSeIDoN obtains a much lower number of spurious sources with respect to the filtering method. The recovering of the flux density of the detections, attending to the results on photometry, is better for the neural networks, which have a relative error of 10% above 100 mJy for the three frequencies, while the filter obtains a 10% relative error above 150 mJy for 143 and 217 GHz, and above 200 mJy for 353 GHz. Conclusions. Based on the results, neural networks are the perfect candidates to substitute filtering methods to detect multi-frequency PS in future CMB experiments. Moreover, we show that a multi-frequency approach can detect sources with higher accuracy than single-frequency approaches also based on neural networks.
    Colecciones a las que pertenece
    • D15 Artículos [846]
    • D15 Proyectos de Investigación [161]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España