Structure of characteristic Lyapunov vectors in anharmonic Hamiltonian lattices
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/28566ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCAutoría
Romero-Bastida, M.; Pazó Bueno, Diego Santiago


Fecha
2010-09Derechos
©2010 The American Physical Society
Publicado en
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(3), 036205
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
In this work we perform a detailed study of the scaling properties of Lyapunov vectors (LVs) for two different one-dimensional Hamiltonian lattices: the Fermi-Pasta-Ulam and ?4 models. In this case, characteristic (also called covariant) LVs exhibit qualitative similarities with those of dissipative lattices but the scaling exponents are different and seemingly nonuniversal. In contrast, backward LVs (obtained via Gram-Schmidt orthonormalizations) present approximately the same scaling exponent in all cases, suggesting it is an artificial exponent produced by the imposed orthogonality of these vectors. We are able to compute characteristic LVs in large systems thanks to a "bit reversible" algorithm, which completely obviates computer memory limitations.
Colecciones a las que pertenece
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]