Characteristic Lyapunov vectors in chaotic time-delayed systems
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/28562ISSN: 1539-3755
ISSN: 1550-2376
ISSN: 2470-0045
ISSN: 2470-0053
Registro completo
Mostrar el registro completo DCFecha
2010-11Derechos
©2010 The American Physical Society
Publicado en
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(5), 056201
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
We compute Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in delay-differential equations with large time delay. We find that characteristic LVs, and backward (Gram-Schmidt) LVs, exhibit long-range correlations, identical to those already observed in dissipative extended systems. In addition we give numerical and theoretical support to the hypothesis that the main LV belongs, under a suitable transformation, to the universality class of the Kardar-Parisi-Zhang equation. These facts indicate that in the large delay limit (an important class of) delayed equations behave exactly as dissipative systems with spatiotemporal chaos.
Colecciones a las que pertenece
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]