Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorNazarov, Sergei A.
dc.contributor.authorOrive Illera, Rafael
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-04-19T11:07:53Z
dc.date.available2023-04-19T11:07:53Z
dc.date.issued2023-02-02
dc.identifier.issn0921-7134
dc.identifier.issn1875-8576
dc.identifier.otherPGC2018-098178-B-I00es_ES
dc.identifier.otherPID2020-114703GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28542
dc.description.abstractWe examine the band-gap structure of the spectrum of the Neumann problem for the Laplace operator in a strip with periodic dense transversal perforation by identical holes of a small diameter ε>0. The periodicity cell itself contains a string of holes at a distance O(ε) between them. Under assumptions on the symmetry of the holes, we derive and justify asymptotic formulas for the endpoints of the spectral bands in the low-frequency range of the spectrum as ε→0. We demonstrate that, for ε small enough, some spectral gaps are open. The position and size of the opened gaps depend on the strip width, the perforation period, and certain integral characteristics of the holes. The asymptotic behavior of the dispersion curves near the band edges is described by means of a 'fast Floquet variable' and involves boundary layers in the vicinity of the perforation string of holes. The dependence on the Floquet parameter of the model problem in the periodicity cell requires a serious modification of the standard justification scheme in homogenization of spectral problems. Some open questions and possible generalizations are listed.es_ES
dc.description.sponsorshipThe work has been partially supported by MICINN through PGC2018-098178-B-I00, PID2020-114703GB-I00 and Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000904-S).es_ES
dc.format.extent52 p.es_ES
dc.language.isoenges_ES
dc.publisherIOS Presses_ES
dc.rights© IOS Press. The final publication is available at IOS Press through http://dx.doi.org/10.3233/ASY-221776es_ES
dc.sourceAsymptotic Analysis, 2023, 131(3-4), 385-441es_ES
dc.subject.otherBand-gap structurees_ES
dc.subject.otherSpectral perturbationses_ES
dc.subject.otherHomogenizationes_ES
dc.subject.otherPerforated mediaes_ES
dc.subject.otherNeumann-Laplace operatores_ES
dc.subject.otherWaveguidees_ES
dc.titleSpectral gaps in a double-periodic perforated Neumann waveguidees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.3233/ASY-221776es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3233/ASY-221776
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo