Spectral gaps in a double-periodic perforated Neumann waveguide
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/28542DOI: 10.3233/ASY-221776
ISSN: 0921-7134
ISSN: 1875-8576
Registro completo
Mostrar el registro completo DCAutoría
Gómez Gandarillas, Delfina

Fecha
2023-02-02Derechos
© IOS Press. The final publication is available at IOS Press through http://dx.doi.org/10.3233/ASY-221776
Publicado en
Asymptotic Analysis, 2023, 131(3-4), 385-441
Editorial
IOS Press
Enlace a la publicación
Palabras clave
Band-gap structure
Spectral perturbations
Homogenization
Perforated media
Neumann-Laplace operator
Waveguide
Resumen/Abstract
We examine the band-gap structure of the spectrum of the Neumann problem for the Laplace operator in a strip with periodic dense transversal perforation by identical holes of a small diameter ε>0. The periodicity cell itself contains a string of holes at a distance O(ε) between them. Under assumptions on the symmetry of the holes, we derive and justify asymptotic formulas for the endpoints of the spectral bands in the low-frequency range of the spectrum as ε→0. We demonstrate that, for ε small enough, some spectral gaps are open. The position and size of the opened gaps depend on the strip width, the perforation period, and certain integral characteristics of the holes. The asymptotic behavior of the dispersion curves near the band edges is described by means of a 'fast Floquet variable' and involves boundary layers in the vicinity of the perforation string of holes. The dependence on the Floquet parameter of the model problem in the periodicity cell requires a serious modification of the standard justification scheme in homogenization of spectral problems. Some open questions and possible generalizations are listed.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]