Mostrar el registro sencillo

dc.contributor.authorGonzález-Platas, Javier
dc.contributor.authorRodríguez González, Fernando 
dc.contributor.authorLiang, Akun
dc.contributor.authorPopescu, Catalin
dc.contributor.authorHe, Zhangzhen
dc.contributor.authorSantamaría-Pérez, David
dc.contributor.authorRodríguez-Hernández, Plácida
dc.contributor.authorMuñoz, Alfonso
dc.contributor.authorErrandonea, Daniel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-04-18T14:17:55Z
dc.date.available2023-04-18T14:17:55Z
dc.date.issued2022
dc.identifier.issn0020-1669
dc.identifier.issn1520-510X
dc.identifier.otherPGC2018-101464-B-I00es_ES
dc.identifier.otherPGC2018-097520-A-I00es_ES
dc.identifier.otherPID2019106383GBC41es_ES
dc.identifier.otherPID2019106383GBC43es_ES
dc.identifier.otherPID2019106383GBC44es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28536
dc.description.abstractThe understanding of the interplay between crystal structure and electronic structure in semiconductor materials is of great importance due to their potential technological applications. Pressure is an ideal external control parameter to tune the crystal structures of semiconductor materials in order to investigate their emergent piezo-electrical and optical properties. Accordingly, we investigate here the high-pressure behavior of the semiconducting antiferromagnetic material β-Cu2V2O7, finding it undergoes a pressure-induced phase transition to γ-Cu2V2O7 below 4000 atm. The pressure-induced structural and electronic evolutions are investigated by single-crystal X-ray diffraction, absorption spectroscopy and ab initio density functional theory calculations. β-Cu2V2O7 has previously been suggested as a promising photocatalyst for water splitting. Now, these new results suggest that β-Cu2V2O7 could also be of interest with regards to barocaloric effects, due to the low phase -transition pressure, in particular because it is a multiferroic material. Moreover, the phase transition involves an electronic band gap decrease of approximately 0.2 eV (from 1.93 to 1.75 eV) and a large structural volume collapse of approximately 7%.es_ES
dc.description.sponsorshipThe authors acknowledge financial support from the Spanish Research Agency (AEI) and Spanish Ministry of Science and Investigation (MCIN) under projects PID2019106383GBC41/ C43/C44 (DOI: 10.13039/501100011033), and projects PGC2018-101464−B-I00 and PGC2018-097520-A-I00 (cofinanced by EU FEDER funds). The authors acknowledge financial support from the MALTA Consolider Team network, under project RED2018-102612-T. R.T. acknowledges funding from the Spanish Ministry of economy and competitiveness (MINECO) via the Juan de la Cierva Formación program (FJC2018-036185-I). J.G.P. thanks the Servicios Generales de Apoyo a la Investigación (SEGAI) at the University of La Laguna. A.L. and D.E. would like to thank the Generalitat Valenciana for the Ph.D. fellowship GRISOLIAP/2019/025, and the authors would also like to thank them for funding under the Grant Prometeo/2018/123 (EFIMAT). The authors also thank ALBA synchrotron light source for funded experiment under proposal numbers 2020074389 and 2020074398 at the MSPD-BL04 beamline.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© 2022 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceInorganic Chemistry, 2022, 61(8), 3697-3707es_ES
dc.titlePressure-induced phase transition and band gap decrease in semiconducting β-Cu2V2O7es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.inorgchem.1c03878es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.inorgchem.1c03878
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 The Authors.