Mostrar el registro sencillo

dc.contributor.authorAbarca González, José Antonio
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorMerino García, Iván 
dc.contributor.authorBeobide Pacheco, Garikoitz
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-04-10T10:08:12Z
dc.date.available2023-04-10T10:08:12Z
dc.date.issued2023-06
dc.identifier.issn2213-3437
dc.identifier.issn2213-2929
dc.identifier.otherPID2020-112845RB-I00es_ES
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherPID2019-104050RA-I00es_ES
dc.identifier.otherPLEC2022-009398es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28502
dc.description.abstractDespite being one of the most promising CO2 utilization strategies some aspects still hinder the scaling up of CO2 electroreduction processes. One of them is the fabrication of the electrodes, which is currently rudimentary and depends fundamentally on the human factor. Here, we report an automated spray pyrolysis technique coupled with a plasma surface treatment to fabricate Bi-based gas diffusion electrodes for a enhanced CO2 electroreduction to formate. Three fabrication parameters, namely i) spraying nozzle height, ii) step distance, and iii) ink flow rate, are evaluated to determine the optimal fabrication conditions. The results confirm the reproducibility of the fabrication method, improving the overall performance of the electrodes fabricated with a manual airbrushing method, and leading to formate rates of up to 10.1 mmol m-2 s-1 at 200 mA cm-2. Besides, plasma treatment can improve formate concentration by up to 12 % in comparison with the untreated electrode. As a result, this work provides novel insights into the development of more efficient methods to manufacture electrodes for CO2 electroreduction, which will eventually bring this technology closer to an industrial scale.es_ES
dc.description.sponsorshipThe authors fully acknowledge the financial support received from the Spanish State Research Agency (AEI) through the projects PID2020-112845RB-I00, TED2021–129810B-C21, PID2019-104050RA-I00, and PLEC2022-009398 (MCIN/AEI/10.13039/501100011033). Jose Antonio Abarca gratefully acknowledges the predoctoral research grant (FPI) PRE2021-097200.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Environmental Chemical Engineering, 2023, 11(3), 109724es_ES
dc.subject.otherCO2 electroreductiones_ES
dc.subject.otherGas diffusion electrodeses_ES
dc.subject.otherElectrode manufacturinges_ES
dc.subject.otherSpray pyrolysises_ES
dc.subject.otherPlasma surface treatmentes_ES
dc.subject.otherFormatees_ES
dc.titleOptimized manufacturing of gas diffusion electrodes for CO2 electroreduction with automatic spray pyrolysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jece.2023.109724es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jece.2023.109724
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International