Mostrar el registro sencillo

dc.contributor.authorBeltrán Álvarez, Carlos 
dc.contributor.authorBétermin, Laurent
dc.contributor.authorGrabner, Peter
dc.contributor.authorSteinerberger, Stefan
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-04-05T17:13:51Z
dc.date.available2023-04-05T17:13:51Z
dc.date.issued2022
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.urihttps://hdl.handle.net/10902/28468
dc.description.abstractThe condition number for eigenvector computations is a well– studied quantity. But how small can it possibly be?: Specifically, what matrices are perfectly conditioned with respect to eigenvector computations? In this note we answer this question for n × n matrices, giving a solution that is exact to first-order as n → ∞.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Mathematical Societyes_ES
dc.rights© American Mathematical Society. First published in Mathematics of computation in volume 91, number 335, published by the American Mathematical Societyes_ES
dc.sourceMathematics of Computation, 2022, 91(335), 1237-1245es_ES
dc.titleHow well-conditioned can the eigenvector problem be?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1090/mcom/3706es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1090/mcom/3706
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo