dc.contributor.author | Beltrán Álvarez, Carlos | |
dc.contributor.author | Bétermin, Laurent | |
dc.contributor.author | Grabner, Peter | |
dc.contributor.author | Steinerberger, Stefan | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-04-05T17:13:51Z | |
dc.date.available | 2023-04-05T17:13:51Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.issn | 1088-6842 | |
dc.identifier.uri | https://hdl.handle.net/10902/28468 | |
dc.description.abstract | The condition number for eigenvector computations is a well– studied quantity. But how small can it possibly be?: Specifically, what matrices are perfectly conditioned with respect to eigenvector computations? In this note we answer this question for n × n matrices, giving a solution that is exact to first-order as n → ∞. | es_ES |
dc.format.extent | 8 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.rights | © American Mathematical Society. First published in Mathematics of computation in volume 91, number 335, published by the American Mathematical Society | es_ES |
dc.source | Mathematics of Computation, 2022, 91(335), 1237-1245 | es_ES |
dc.title | How well-conditioned can the eigenvector problem be? | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1090/mcom/3706 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1090/mcom/3706 | |
dc.type.version | acceptedVersion | es_ES |