Mostrar el registro sencillo

dc.contributor.authorRodríguez Ramos, Anaes_ES
dc.contributor.authorRamos-Docampo, Miguel A.es_ES
dc.contributor.authorSalgueiriño, Verónicaes_ES
dc.contributor.authorLópez Fanarraga, Mónica es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-27T15:54:45Z
dc.date.available2023-03-27T15:54:45Z
dc.date.issued2023es_ES
dc.identifier.issn2590-0498es_ES
dc.identifier.otherPID2020-119242RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28375
dc.description.abstractIn this study, we combine nanotechnology and biotechnology to design a biocompatible propulsion system based on the molecular chaperone Hsp90, a heat-shock protein (Hsp) that, in the presence of adenosine 5'-triphosphate (ATP), undergoes nanoscale conformational changes while trapping and renaturing other proteins. We show how, subjected to ATP availability in the medium, Hsp90-functionalized particles significantly enhance their diffusion motion, being able to achieve ballistic motion, while keeping the ability to restore the activity of surrounding heat-inactivated proteins. This biomechanics-based propulsion mechanism represents a promising strategy for the design of self-propelled nanodevices capable of performing sophisticated tasks in live biological contexts that include sensing the environment, recognizing and capturing, folding, and restoring defective proteins on the fly. In the short term, Hsp90-driven nanodevices could be applied to improve industrial processes that require enzymatic catalysis and high temperatures. But in the medium to long term, this bioactive coating could be used in the design of nanomachines that, like mini-robots, navigate the complex body cavities of biological tissues, deliver therapies and/or remove misfolded proteins in disorders such as Alzheimer's or Parkinson's disease.es_ES
dc.description.sponsorshipAcknowledgments: The authors acknowledge the financial support from the Spanish Instituto de Salud Carlos iii, and the European Union FEDER funds under Projects ref. PI22/00030, PI19/00349, from the Spanish Ministerio de Ciencia e Innovacion under project PID2020-119242RB-I00 and the European Union H2020-MSCA-RISE-2019 PEPSA-MATE project. ARR and MARD acknowledge financial support from IDIVAL (PREVAL19/04) and the Xunta de Galicia (2017- ED481A/322) respectively. We also acknowledge IDIVAL projects INNVAL19/12 and INNVAL21/19es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights© 2023 The Authorses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMaterials Today Advances 17 (2023) 100353es_ES
dc.subject.otherMicromotorses_ES
dc.subject.otherMicrorobotes_ES
dc.subject.otherProtein repaires_ES
dc.subject.otherATPasees_ES
dc.subject.otherChaperonees_ES
dc.subject.otherHeat stresses_ES
dc.titleNanoparticle biocoating to create ATP-powered swimmers capable of repairing proteins on the flyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.mtadv.2023.100353es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.mtadv.2023.100353es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International