Mostrar el registro sencillo

dc.contributor.authorChakroun, Ala Eddin
dc.contributor.authorHammami, Ahmed
dc.contributor.authorHammami, Chaima
dc.contributor.authorJuan de Luna, A. M. de 
dc.contributor.authorChaari, Fakher
dc.contributor.authorFernández del Rincón, Alfonso 
dc.contributor.authorViadero Rueda, Fernando 
dc.contributor.authorHaddar, Mohamed
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-22T18:06:51Z
dc.date.available2023-03-22T18:06:51Z
dc.date.issued2023-06-15
dc.identifier.issn0888-3270
dc.identifier.issn1096-1216
dc.identifier.otherPID2020-116213RB-I00es_ES
dc.identifier.otherPID2020-116572RA-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28323
dc.description.abstractPolymer-metal worm drives are common in automotives and mechatronic systems. Despite this, there is a lack of studies on this type of transmission, especially when it comes to their dynamic behaviour. With the modern orientation of Industry 4.0 towards advancing technology in predictive maintenance, it is of a great importance to consider the study of the dynamic behaviour of this mechanism. It is first proposed to introduce an appropriate dynamic model to correctly simulate, by numerical means, the behaviour of a non-defective polymer-metal worm drive. For this purpose, it is necessary to correctly model the Gear Mesh Stiffness (GMS) of the gearing system. The GMS depends on the nature of the worm and worm gear materials. It is assumed that no deformation occurs in the steel worm, in contrast to the polymer worm whose viscoelastic behaviour must be accurately modelled. Generalized Maxwell Model (GMM) is chosen to model this behaviour. Eventually, the vibration signals from the numerical model are compared with those determined by the experimental tests. To obtain more similarities between the numerical and experimental signals, it is proposed to perform an optimisation. The procedure consists in using the Nelder-Mead simplex method to obtain a minimum residual objective function. After optimisation, an accuracy of 94% between the experimental and numerical results is achieved.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge Project No. “19PEJC10-06” funded by the Tunisian Ministry of Higher Education and Scientific Research. The authors would like to also acknowledge projects PID2020-116213RB-I00 and PID2020-116572RA-I00 funded by the Spanish Ministry of Science and Innovation.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMechanical Systems and Signal Processing, 2023, 193, 110263es_ES
dc.subject.otherPolymeres_ES
dc.subject.otherWorm drivees_ES
dc.subject.otherCreepes_ES
dc.subject.otherGear mesh stiffnesses_ES
dc.subject.otherGeneralized maxwell modeles_ES
dc.titleNumerical and experimental study of the dynamic behaviour of a polymer-metal worm drivees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ymssp.2023.110263es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ymssp.2023.110263
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International