Mostrar el registro sencillo

dc.contributor.authorGómez Pérez, Ana Isabel 
dc.contributor.authorGómez Pérez, Domingo 
dc.contributor.authorTirke, Andrew
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-20T15:31:18Z
dc.date.available2023-03-20T15:31:18Z
dc.date.issued2021
dc.identifier.isbn978-3-030-68868-4
dc.identifier.urihttps://hdl.handle.net/10902/28262
dc.description.abstractWatermarking digital media is one of the important chal- lenges for information hiding. Not only the watermark must be resistant to noise and against attempts of modification, legitimate users should not be aware that it is embedded in the media. One of the techniques for watermarking is using an special variant of spread-spectrum tech- nique, called frequency hopping. It requires ensembles of periodic binary sequences with low off-peak autocorrelation and cross-correlation. Un- fortunately, they are quite rare and difficult to find. The small Kasami, Kamaletdinov, and Extended Rational Cycle constructions are versatile, because they can also be converted into Costas-like arrays for frequency hopping. We study the implementation of such ensembles using linear feedback shift registers. This permits an efficient generation of sequences and arrays in real time in FPGAs. Such an implementation requires minimal memory usage and permits dynamic updating of sequences or arrays. The aim of our work was to broaden current knowledge of sets of se- quences with low correlation studying their implementation using linear feedback shift registers. A remarkable feature of these families is their similarities in terms of implementation and it may open new way to characterize sequences with low correlation, making it easier to gener- ate them. It also validates some conjectures made by Moreno and Tirkel about arrays constructed using the method of composition.es_ES
dc.description.sponsorshipSupported by Consejería de Universidades e Investigación, Medio Ambiente y Política Social, Gobierno de Cantabria (ref. VP34)es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.sourceArithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science, 2021, 12542es_ES
dc.subject.otherPeriodic Sequenceses_ES
dc.subject.otherMultidimensional Arrayses_ES
dc.subject.otherWatermarkinges_ES
dc.titleRecursion Polynomials of Unfolded Sequenceses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/978-3-030-68869-1_9es_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo