Mostrar el registro sencillo

dc.contributor.authorÁlvarez-Alonso, Pablo
dc.contributor.authorGorria, Pedro
dc.contributor.authorBlanco, Jesus A.
dc.contributor.authorSánchez-Marcos, Jorge
dc.contributor.authorCuello, Gabriel J.
dc.contributor.authorPuente-Orench, Inés
dc.contributor.authorRodríguez-Velamazán, José Alberto
dc.contributor.authorGarbarino, Gastón
dc.contributor.authorPedro del Valle, Imanol de 
dc.contributor.authorRodríguez Fernández, Jesús 
dc.contributor.authorSánchez Llamazares, José L.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-20T11:38:07Z
dc.date.available2023-03-20T11:38:07Z
dc.date.issued2012-11
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherMAT2011-27573-C04-02es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28253
dc.description.abstractCombining different experimental techniques, investigations in hexagonal P63/mmc Er2Fe17 show remarkable magnetovolume anomalies below the Curie temperature, TC. The spontaneous magnetostriction reaches 1.6×10−2 at 5 K and falls to zero well above TC, owing to short-range magnetic correlations. Moreover, Er2Fe17 exhibits direct and inverse magnetocaloric effects (MCE) with moderate isothermal magnetic entropy ΔSM, and diabatic temperature ΔTad changes [ΔSM∼−4.7 J(kgK)−1 and ΔTad∼2.5 K near the TC, and ΔSM∼1.3 J(kgK)−1 and ΔTad∼−0.6 K at 40 K for ΔH=80 kOe, respectively, determined from magnetization measurements]. The existence of an inverse MCE seems to be related to a crystalline electric field-level crossover in the Er sublattice and the ferrimagnetic arrangement between the magnetic moments of the Er and Fe sublattice. The main trends found experimentally for the temperature dependence of ΔSM and ΔTad as well as for the atomic magnetic moments are qualitatively well described considering a mean-field Hamiltonian that incorporates both crystalline electric field and exchange interactions. ΔSM(T) and ΔTad(T) curves are essentially zero at ∼150 K, the temperature where the transition from direct to inverse MCE occurs. A possible interplay between the MCE and the magnetovolume anomalies is also discussed.es_ES
dc.description.sponsorshipFinancial support from Spanish MICINN (MAT2011-27573-C04-02) and from the Basque Government (IT-347- 07) is acknowledged. J.L.S.Ll. acknowledges the support received from CONACYT, Mexico, under the project CB2010-01-156932, and Laboratorio Nacional de Investigaciones en Nanociencias y Nanotecnología (LINAN, IPICyT). J.A.R.V. acknowledges the support from the research project MAT2007-61621. We thank ILL and CRG-D1B for allocating neutron beamtime, and ESRF for synchrotron beamtime. The SCTs at the University of Oviedo and the technical support received from M.Sc. G. J. Labrada-Delgado and B. A. Rivera-Escoto (DMA, IPICyT) are also acknowledged.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights©American Physical Societyes_ES
dc.sourcePhysical Review B - Condensed Matter and Materials Physics, 2012, 86(18), 184411es_ES
dc.titleMagnetovolume and magnetocaloric effects in Er2Fe17es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1103/PhysRevB.86.184411es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1103/PhysRevB.86.184411
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo