• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reducing energy consumption in fuzzy flexible job shops using memetic search

    Ver/Abrir
    ReducingEnergyConsum ... (444.4Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/28239
    DOI: 10.1007/978-3-031-06527-9_14
    ISBN: 978-3-031-06527-9
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Gómez, PabloAutoridad Unican; González Rodríguez, InésAutoridad Unican; Vela, Camino R.
    Fecha
    2022
    Publicado en
    Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, 2022, 13259, 140–150
    Enlace a la publicación
    https://doi.org/10.1007/978-3-031-06527-9_14
    Palabras clave
    Flexible job shop scheduling
    Energy consumption
    Fuzzy numbers
    Memetic algorithm
    Neighborhood
    Resumen/Abstract
    The flexible job shop is a problem that has attracted much research attention both because of its importance in manufacturing processes and its computational complexity. However, industry is a highly complex environment that is constantly changing, and models and solving methods need to evolve and become richer to stay relevant. A source of complexity is the uncertainty in some parameters, in this work it is incorporated by modeling processing time using triangular fuzzy numbers. We also introduce the objective of reducing energy consumption, motivated by the fight against global warming. To solve the problem, we propose a memetic algorithm, a hybrid method that combines global search with local search. We have put a special focus on the neighborhood functions used to guide the local search since they are key for correct intensification. To assess the performance of the proposed method, we present an experimental analysis that compares the memetic algorithm to a powerful constraint programming solver, and we analyze how the proposed neighborhood functions contribute to increasing the search power of our method.
    Colecciones a las que pertenece
    • D21 Congresos [36]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España