Mostrar el registro sencillo

dc.contributor.authorAfsar, Sezin
dc.contributor.authorPalacios, Juan José
dc.contributor.authorPuente, Jorge
dc.contributor.authorVela, Camino R.
dc.contributor.authorGonzález Rodríguez, Inés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-17T13:55:08Z
dc.date.available2023-03-17T13:55:08Z
dc.date.issued2022
dc.identifier.issn2210-6502
dc.identifier.issn2210-6510
dc.identifier.otherTIN2016-79190-Res_ES
dc.identifier.otherPID2019-106263RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28236
dc.description.abstractThe quest for sustainability has arrived to the manufacturing world, with the emergence of a research field known as green scheduling. Traditional performance objectives now co-exist with energy-saving ones. In this work, we tackle a job shop scheduling problem with the double goal of minimising energy consumption during machine idle time and minimising the project’s makespan. We also consider uncertainty in processing times, modelled with fuzzy numbers. We present a multi-objective optimisation model of the problem and we propose a new enhanced memetic algorithm that combines a multiobjective evolutionary algorithm with three procedures that exploit the problem-specific available knowledge. Experimental results validate the proposed method with respect to hypervolume, -indicator and empirical attaintment functions.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2021 The Author(s).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSwarm and Evolutionary Computation, 2022, 68, 101016es_ES
dc.subject.otherJob shop schedulinges_ES
dc.subject.otherFuzzy durationses_ES
dc.subject.otherMulti-objectivees_ES
dc.subject.otherMakespanes_ES
dc.subject.otherNon-processing energyes_ES
dc.subject.otherMemetic algorithmes_ES
dc.titleMulti-objective enhanced memetic algorithm for green job shop scheduling with uncertain timeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.swevo.2021.101016es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.swevo.2021.101016
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021 The Author(s).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 The Author(s).