dc.contributor.author | López Virto, María Amparo | |
dc.contributor.author | Vilar Cortabitarte, Rocío | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-03-16T15:11:19Z | |
dc.date.available | 2023-03-16T15:11:19Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2470-0010 | |
dc.identifier.issn | 2470-0029 | |
dc.identifier.issn | 1550-7998 | |
dc.identifier.issn | 1550-2368 | |
dc.identifier.other | PID2019-109829GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/28223 | |
dc.description.abstract | We construct the first comprehensive radioactive background model for a dark matter search with charge-coupled devices (CCDs). We leverage the well-characterized depth and energy resolution of the DAMIC at SNOLAB detector and a detailed GEANT4-based particle-transport simulation to model both bulk and surface backgrounds from natural radioactivity down to 50 eVee. We fit to the energy and depth distributions of the observed ionization events to differentiate and constrain possible background sources, for example, bulk 3H from silicon cosmogenic activation and surface 210Pb from radon plate-out. We observe the bulk background rate of the DAMIC at SNOLAB CCDs to be as low as 3.1±0.6 counts kg−1 day−1 keV−1ee, making it the most sensitive silicon dark matter detector. Finally, we discuss the properties of a statistically significant excess of events over the background model with energies below 200 eVee. | es_ES |
dc.description.sponsorship | We are grateful to SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We acknowledge financial support from the following agencies and organizations: National Science Foundation through Grants No. NSF PHY-1912766 and NSF PHY-1806974; Kavli Institute for Cosmological Physics at The University of Chicago through an endowment from the Kavli Foundation; Gordon and Betty Moore Foundation through Grant GBMF6210 to the University of Washington; Fermi National Accelerator Laboratory (Contract No. DE-AC02- 07CH11359); Institut Lagrange de Paris Laboratoire d’Excellence (under Reference No. ANR-10-LABX-63) supported by French state funds managed by the Agence Nationale de la Recherche within the Investissements d’Avenir program under Reference No. ANR-11-IDEX0004-02; Swiss National Science Foundation through Grant No. 200021_153654 and via the Swiss Canton of Zurich; Project PID2019–109829GB-I00 funded by MCIN/ AEI /10.13039/501100011033; Mexico’s Consejo Nacional de Ciencia y Tecnología (Grant No. 240666) and Dirección General de Asuntos del Personal Acad´emico–Universidad Nacional Autónoma de M´exico (Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica Grants No. IB100413 and No. IN112213); STFC Global Challenges Research Fund (Foundation Awards Grant ST/R002908/1). | es_ES |
dc.format.extent | 27 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.rights | Attribution 4.0 International © CERN, for the benefit of the CMS collaboration | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | Physical Review D, 2022, 105, 062003 | es_ES |
dc.title | Characterization of the background spectrum in DAMIC at SNOLAB | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1103/PhysRevD.105.062003 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1103/PhysRevD.105.062003 | |
dc.type.version | publishedVersion | es_ES |