Mostrar el registro sencillo

dc.contributor.authorTenorio, María
dc.contributor.authorMoreno Sierra, César 
dc.contributor.authorFebrer, Pol
dc.contributor.authorCastro-Esteban, Jesús
dc.contributor.authorOrdejón, Pablo
dc.contributor.authorPeña, Diego
dc.contributor.authorPruneda, Miguel
dc.contributor.authorMugarza, Aitor
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-14T16:35:44Z
dc.date.available2023-03-14T16:35:44Z
dc.date.issued2022-05
dc.identifier.issn1521-4095
dc.identifier.issn0935-9648
dc.identifier.otherSEV-2017-0706es_ES
dc.identifier.otherPID2019-107338RB-C65es_ES
dc.identifier.otherPID2019-107338RB-C62es_ES
dc.identifier.otherPGC2018-096955-B-C43es_ES
dc.identifier.otherPCI2019-111933-2es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28174
dc.description.abstractNanometer scale lateral heterostructures with atomically sharp band discontinuities can be conceived as the 2D analogues of vertical Van der Waals heterostructures, where pristine properties of each component coexist with interfacial phenomena that result in a variety of exotic quantum phenomena. However, despite considerable advances in the fabrication of lateral heterostructures, controlling their covalent interfaces and band discontinuities with atomic precision, scaling down components and producing periodic, lattice-coherent superlattices still represent major challenges. Here, a synthetic strategy to fabricate nanometer scale, coherent lateral superlattice heterojunctions with atomically sharp band discontinuity is reported. By merging interdigitated arrays of different types of graphene nanoribbons by means of a novel on-surface reaction, superlattices of 1D, and chemically heterogeneous nanoporous junctions are obtained. The latter host subnanometer quantum dipoles and tunneling in-gap states, altogether expected to promote interfacial phenomena such as interribbon excitons or selective photocatalysis.es_ES
dc.description.sponsorshipThis research was funded by the CERCA Programme/Generalitat de Catalunya and supported by the Spanish Ministry of Economy and Competitiveness, MINECO (Grant No. SEV-2017-0706), Grants PID2019-107338RB-C65, and PID2019-107338RB-C62, funded by MCIN/AEI/ 10.13039/501100011033, Grant PGC2018-096955-B-C43 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”, FLAG-ERA grant LEGOCHIP Projects PCI2019-111890-2 and PCI2019-111933-2 funded by MCIN/AEI /10.13039/501100011033 and cofounded by the European Union, the GenCat (Grant No. 2017SGR1506), the European Union MaX Center of Excellence (EU-H2020 Grant No. 924143), the European Regional Development Fund (ERDF) under the program Interreg V-A España-Francia-Andorra (Grant No. EFA 194/16 TNSI), and Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2019–2022, ED431G 2019/03). C.M. was supported by Grant RYC2019-028110-I funded by MICIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”. M.T. has been supported by Spanish State Research Agency/FSE (ref. BES-2017-08078, project ref. SEV-2013-0295-17-2). The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-QCM-2019-1-0051).es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-Blackwelles_ES
dc.rights© 2022 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvanced Materials, 2022, 34(20), 2110099es_ES
dc.titleAtomically Sharp Lateral Superlattice Heterojunctions Built-In Nitrogen-Doped Nanoporous Graphenees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/adma.202110099es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/adma.202110099
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 The Authors.