dc.contributor.author | Tenorio, María | |
dc.contributor.author | Moreno Sierra, César | |
dc.contributor.author | Febrer, Pol | |
dc.contributor.author | Castro-Esteban, Jesús | |
dc.contributor.author | Ordejón, Pablo | |
dc.contributor.author | Peña, Diego | |
dc.contributor.author | Pruneda, Miguel | |
dc.contributor.author | Mugarza, Aitor | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-03-14T16:35:44Z | |
dc.date.available | 2023-03-14T16:35:44Z | |
dc.date.issued | 2022-05 | |
dc.identifier.issn | 1521-4095 | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.other | SEV-2017-0706 | es_ES |
dc.identifier.other | PID2019-107338RB-C65 | es_ES |
dc.identifier.other | PID2019-107338RB-C62 | es_ES |
dc.identifier.other | PGC2018-096955-B-C43 | es_ES |
dc.identifier.other | PCI2019-111933-2 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/28174 | |
dc.description.abstract | Nanometer scale lateral heterostructures with atomically sharp band discontinuities can be conceived as the 2D analogues of vertical Van der Waals heterostructures, where pristine properties of each component coexist with interfacial phenomena that result in a variety of exotic quantum phenomena. However, despite considerable advances in the fabrication of lateral heterostructures, controlling their covalent interfaces and band discontinuities with atomic precision, scaling down components and producing periodic, lattice-coherent superlattices still represent major challenges. Here, a synthetic strategy to fabricate nanometer scale, coherent lateral superlattice heterojunctions with atomically sharp band discontinuity is reported. By merging interdigitated arrays of different types of graphene nanoribbons by means of a novel on-surface reaction, superlattices of 1D, and chemically heterogeneous nanoporous junctions are obtained. The latter host subnanometer quantum dipoles and tunneling in-gap states, altogether expected to promote interfacial phenomena such as interribbon excitons or selective photocatalysis. | es_ES |
dc.description.sponsorship | This research was funded by the CERCA Programme/Generalitat de Catalunya and supported by the Spanish Ministry of Economy and Competitiveness, MINECO (Grant No. SEV-2017-0706), Grants PID2019-107338RB-C65, and PID2019-107338RB-C62, funded by MCIN/AEI/ 10.13039/501100011033, Grant PGC2018-096955-B-C43 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”, FLAG-ERA grant LEGOCHIP Projects PCI2019-111890-2 and PCI2019-111933-2 funded by MCIN/AEI /10.13039/501100011033 and cofounded by the European Union, the GenCat (Grant No. 2017SGR1506), the European Union MaX Center of Excellence (EU-H2020 Grant No. 924143), the European Regional Development Fund (ERDF) under the program Interreg V-A España-Francia-Andorra (Grant No. EFA 194/16 TNSI), and Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2019–2022, ED431G 2019/03). C.M. was supported by Grant RYC2019-028110-I funded by MICIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”. M.T. has been supported by Spanish State Research Agency/FSE (ref. BES-2017-08078, project ref. SEV-2013-0295-17-2). The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-QCM-2019-1-0051). | es_ES |
dc.format.extent | 9 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.rights | © 2022 The Authors. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Advanced Materials, 2022, 34(20), 2110099 | es_ES |
dc.title | Atomically Sharp Lateral Superlattice Heterojunctions Built-In Nitrogen-Doped Nanoporous Graphene | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1002/adma.202110099 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1002/adma.202110099 | |
dc.type.version | publishedVersion | es_ES |