A nonlocal model describing tumor angiogenesis
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Granero Belinchón, Rafael
Fecha
2023Derechos
©2022 The Author(s).
Publicado en
Nonlinear Analysis, 2023, 227, 113180
Editorial
Elsevier
Enlace a la publicación
Palabras clave
Burgers equation
Dispersive equation
Angiogenesis
Resumen/Abstract
In this paper, we derive and study a new mathematical model that describes the onset of angiogenesis. This new model takes the form of a nonlocal Burgers equation with both diffusive and dispersive terms. For a particular value of the parameters, the equation reduces to ∂tp −1/2(−Δ)(α−1)/2H∂tp = −1/2(−Δ)α/2p + p∂xp − ∂xp, where H denotes the Hilbert transform. In addition to the derivation of the new model, the main novelty of the present paper is that we also prove a number of well-posedness results. Finally, some preliminary numerical results are shown. These numerical results suggest that the dynamics of the equation is rich enough to have solutions that blow up in finite time.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]