Mostrar el registro sencillo

dc.contributor.authorBehera, Piush
dc.contributor.authorMay, Molly A.
dc.contributor.authorGómez Ortiz, Fernando 
dc.contributor.authorSusarla, Sandhya
dc.contributor.authorDas, Sujit
dc.contributor.authorNelson, Christopher T.
dc.contributor.authorCaretta, Lucas
dc.contributor.authorHsu, Shang-Lin
dc.contributor.authorMcCarter, Margaret R.
dc.contributor.authorSavitzky, Benjamin H.
dc.contributor.authorBarnard, Edward S.
dc.contributor.authorRaja, Archana
dc.contributor.authorHong, Zijian
dc.contributor.authorGarcía Fernández, Pablo (físico) 
dc.contributor.authorLovesey, Stephen W.
dc.contributor.authorLaan, Gerrit van der
dc.contributor.authorErcius, Peter
dc.contributor.authorOphus, Colin
dc.contributor.authorMartin, Lane W.
dc.contributor.authorJunquera Quintana, Francisco Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-03-09T19:23:03Z
dc.date.available2023-03-09T19:23:03Z
dc.date.issued2022-01-05
dc.identifier.issn2375-2548
dc.identifier.otherPGC2018-096955-B-C41es_ES
dc.identifier.urihttps://hdl.handle.net/10902/28114
dc.description.abstractPolar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation?based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of nonchiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field-controllable order parameter.es_ES
dc.description.sponsorshipThis work was funded by Office of Science, Basic Energy Sciences (BES) at the Department of Energy (DOE) contract no. DE-AC02-05CH11231 (to P.B., M.R.M., S.S., and R.R.); University of California Office of the President and the Ford Foundation (to L.C.); U.S. DOE BES award no. DE-SC0008807. (to M.A.M. and M.B.R.); Grant PGC2018-096955-B-C41 funded by MCIN/AEI/10.13039/501100011033 (to F.G.O., P.G.F., and J.J.); Spanish Ministry of Universities through grant number FPU18/04661 (to F.G.-O.); and Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory under U.S. DOE contract no. DE-AC02-05CH11231 (to A.R.). The optical spectroscopy and electron microscopy work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under contract no. DE-AC02-05CH11231.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Association for the Advancement of Sciencees_ES
dc.rights© 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Sciencees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceScience Advances, 2022, 8(1), eabj8030es_ES
dc.titleElectric field control of chiralityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1126/sciadv.abj8030es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1126/sciadv.abj8030
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of ScienceExcepto si se señala otra cosa, la licencia del ítem se describe como © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science