• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Física Aplicada
    • D14 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Física Aplicada
    • D14 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of patch size and number within a simple model of patchy colloids

    Ver/Abrir
    EffectsPatchSize.pdf (1.358Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/27954
    DOI: 10.1063/1.3415490
    ISSN: 0021-9606
    ISSN: 1089-7690
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Giacometti, Achille; Lado, Fred; Largo Maeso, JulioAutoridad Unican; Pastore, Giorgio; Sciortino, Francesco
    Fecha
    2010
    Derechos
    © American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in (citation of published article) and may be found at (URL/link for published article abstract).
    Publicado en
    Journal of Chemical Physics, 2010, 132(17), 174110
    Editorial
    American Institute of Physics
    Enlace a la publicación
    https://doi.org/10.1063/1.3415490
    Resumen/Abstract
    We report on a computer simulation and integral equation study of a simple model of patchy spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the fraction of covered attractive surface. The simple model explored?the two-patch Kern?Frenkel model?interpolates between a square-well and a hard-sphere potential on changing the coverage . We show that integral equation theory provides quantitative predictions in the entire explored region of temperatures and densities from the square-well limit =1.0 down to 0.6. For smaller , good numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid critical point, where integral equation theory provides a complete description of the angular dependence. These results are contrasted with those for the one-patch case. We investigate the remaining region of coverage via numerical simulation and show how the gas-liquid critical point moves to smaller densities and temperatures on decreasing . Below 0.3, crystallization prevents the possibility of observing the evolution of the line of critical points, providing the angular analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing from a three-dimensional crystal of interconnected planes to a two-dimensional independent-planes structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually reached
    Colecciones a las que pertenece
    • D14 Artículos [202]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España