dc.contributor.author | Olarte, Jorge Alberto | |
dc.contributor.author | Santos, Francisco | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2023-02-20T18:57:02Z | |
dc.date.available | 2023-02-20T18:57:02Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1022-1824 | |
dc.identifier.issn | 1420-9020 | |
dc.identifier.other | MTM2017-83750-P | es_ES |
dc.identifier.other | PID2019-106188GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/27752 | |
dc.description.abstract | Let π:Rn→Rd be any linear projection, let A be the image of the standard basis. Motivated by Postnikov’s study of postitive Grassmannians via plabic graphs and Galashin’s connection of plabic graphs to slices of zonotopal tilings of 3-dimensional cyclic zonotopes, we study the poset of subdivisions induced by the restriction of π to the k-th hypersimplex, for k=1,…,n−1 . We show that: For arbitrary A and for k≤d+1 , the corresponding fiber polytope F(k)(A) is normally isomorphic to the Minkowski sum of the secondary polytopes of all subsets of A of size max{d+2,n−k+1} . When A=Pn is the vertex set of an n-gon, we answer the Baues question in the positive: the inclusion of the poset of π -coherent subdivisions into the poset of all π -induced subdivisions is a homotopy equivalence. When A=C(d,n) is the vertex set of a cyclic d-polytope with d odd and any n≥d+3, there are non-lifting (and even more so, non-separated) π
-induced subdivisions for k=2. | es_ES |
dc.description.sponsorship | The authors were supported by the Einstein Foundation Berlin under grant EVF-2015-230. Work of F. Santos is also supported by grants MTM2017-83750-P/AEI/10.13039/501100011033 and PID2019-106188GB-I00/AEI/10.13039/501100011033 of the Spanish State Research Agency. | es_ES |
dc.format.extent | 34 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | © The Author(s) 2021 | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Selecta Mathematica, New Series, 2022, 28, 4 | es_ES |
dc.subject.other | Hypersimplex | es_ES |
dc.subject.other | Subdivisions | es_ES |
dc.subject.other | Fiber polytope | es_ES |
dc.subject.other | Baues problem | es_ES |
dc.subject.other | Separated sets | es_ES |
dc.title | Hypersimplicial subdivisions | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s00029-021-00722-6 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s00029-021-00722-6 | |
dc.type.version | publishedVersion | es_ES |