Mostrar el registro sencillo

dc.contributor.authorCodenotti, Giulia
dc.contributor.authorSantos, Francisco 
dc.contributor.authorSchymura, Matthias
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-02-20T16:02:36Z
dc.date.available2023-02-20T16:02:36Z
dc.date.issued2022
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.otherMTM2017-83750-Pes_ES
dc.identifier.otherPID2019-106188GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/27742
dc.description.abstractWe explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the “standard terminal simplices” and direct sums of them. We prove this conjecture up to dimension three and show it to be equivalent to the conjecture of González-Merino and Schymura (Discrete Comput. Geom. 58(3), 663–685 (2017)) that the d-th covering minimum of the standard terminal n-simplex equals d/2, for every n≥d . We also show that these two conjectures would follow from a discrete analog for lattice simplices of Hadwiger’s formula bounding the covering radius of a convex body in terms of the ratio of surface area versus volume. To this end, we introduce a new notion of discrete surface area of non-hollow simplices. We prove our discrete analog in dimension two and give strong evidence for its validity in arbitrary dimension.es_ES
dc.description.sponsorshipG. Codenotti and F. Santos were supported by the Einstein Foundation Berlin under grant EVF-2015-230. F. Santos was also supported by grants MTM2017-83750-P/AEI/10.13039/501100011033 and PID2019-106188GB-I00/AEI/10.13039/501100011033 of the Spanish State Research Agency. M. Schymura was supported by the Swiss National Science Foundation (SNSF) within the Project Convexity, geometry of numbers, and the complexity of integer programming (Nr. 163071).es_ES
dc.format.extent47 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rights© The Author(s) 2021es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceDiscrete and Computational Geometry, 2022, 67, 65-111es_ES
dc.subject.otherCovering radiuses_ES
dc.subject.otherDiscrete surface areaes_ES
dc.subject.otherLattice polytopeses_ES
dc.subject.otherVolumees_ES
dc.titleThe Covering Radius and a Discrete Surface Area for Non-Hollow Simpliceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00454-021-00330-3es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00454-021-00330-3
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s) 2021Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2021