Mostrar el registro sencillo

dc.contributor.authorHoz López-Collado, Elena de la 
dc.contributor.authorBarreiro Vilas, Rita Belén 
dc.contributor.authorVielva Martínez, Patricio 
dc.contributor.authorMartínez González, Enrique
dc.contributor.authorRubiño-Martín, J.A.
dc.contributor.authorCasaponsa Galí, Biuse
dc.contributor.authorGuidi, Federica
dc.contributor.authorAshdown, Mark
dc.contributor.authorGénova Santos, Ricardo Tanausú
dc.contributor.authorArtal, E.
dc.contributor.authorCasas Reinares, Francisco Javier 
dc.contributor.authorFernández Cobos, Raúl 
dc.contributor.authorFernández-Torreiro, M.
dc.contributor.authorHerranz Muñoz, Diego 
dc.contributor.authorWatson, R.A.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-02-15T14:59:58Z
dc.date.available2023-02-15T14:59:58Z
dc.date.issued2023
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.otherAYA2007-68058-C03-01es_ES
dc.identifier.otherAYA2007-68058-C03-02es_ES
dc.identifier.otherAYA2010-21766-C03-01es_ES
dc.identifier.otherAYA2010-21766-C03-02es_ES
dc.identifier.otherAYA2014-60438-Pes_ES
dc.identifier.otherESP2015-70646-C2-1-Res_ES
dc.identifier.otherAYA2017-84185-Pes_ES
dc.identifier.otherESP2017-83921-C2-1-Res_ES
dc.identifier.otherAYA2017-90675-REDCes_ES
dc.identifier.otherPGC2018-101814-B-I00es_ES
dc.identifier.otherPID2019-110610RB-C21es_ES
dc.identifier.otherPID2020-120514GB-I00es_ES
dc.identifier.otherIACA13-3E-2336es_ES
dc.identifier.otherIACA15-BE-3707es_ES
dc.identifier.otherEQC2018-004918-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/27713
dc.description.abstractWe derive linearly polarized astrophysical component maps in the Northern Sky from the QUIJOTE-MFI data at 11 and 13?GHz in combination with the Wilkinson Microwave Anisotropy Probe K and Ka bands (23 and 33?GHz) and all Planck polarized channels (30-353-GHz), using the parametric component separation method B-SeCRET. The addition of QUIJOTE-MFI data significantly improves the parameter estimation of the low-frequency foregrounds, especially the estimation of the synchrotron spectral index, [beta]s. We present the first detailed ?s map of the Northern Celestial Hemisphere at a smoothing scale of 2°. We find statistically significant spatial variability across the sky. We obtain an average value of ?3.08 and a dispersion of 0.13, considering only pixels with reliable goodness of fit. The power-law model of the synchrotron emission provides a good fit to the data outside the Galactic plane but fails to track the complexity within this region. Moreover, when we assume a synchrotron model with uniform curvature, cs, we find a value of cs = ?0.0797 ± 0.0012. However, there is insufficient statistical significance to determine which model is favoured, either the power law or the power law with uniform curvature. Furthermore, we estimate the thermal dust spectral parameters in polarization. Our cosmic microwave background, synchrotron, and thermal dust maps are highly correlated with the corresponding products of the PR4 Planck release, although some large-scale differences are observed in the synchrotron emission. Finally, we find that the ?s estimation in the high signal-to-noise synchrotron emission areas is prior-independent, while, outside these regions, the prior governs the [beta]s estimation.es_ES
dc.description.sponsorshipWe thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester, and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007- 68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER funds), PGC2018-101814-B-I00, PID2019-110610RBC21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015- 0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias, and the European Regional Development Fund (ERDF) under grant with reference ProID2020010108. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 687312 (RADIOFOREGROUNDS). EdlH acknowledges financial support from the Concepcion´ Arenal Programme of the Universidad de Cantabria. DT acknowledges the support from the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) with grant no. 2020PM0042. FP acknowledges support from the Spanish State Research Agency (AEI) under grant number PID2019-105552RB-C43. The authors acknowledge the computer resources, technical expertise, and assistance provided by the Spanish Supercomputing Network (RES) node at Universidad de Cantabria. Some of the presented results are based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA) and the Planck Legacy Archive (PLA). Support for LAMBDA is provided by the NASA Office of Space Science. Some of the results in this paper have been derived using the HEALPIX package (Gorski ´ et al. 2005), and the HEALPY (Zonca et al. 2019), NUMPY (Harris et al. 2020), EMCEE (ForemanMackey et al. 2013), and MATPLOTLIB (Hunter 2007) PYTHON packages.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsThis article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2023 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMonthly notices of the Royal Astronomical Society, 2023, (519)3, 3504-3525es_ES
dc.subject.otherCosmology: Observationses_ES
dc.subject.otherMethods: Data Analysises_ES
dc.subject.otherPolarizationes_ES
dc.subject.otherCosmic Microwave Backgroundes_ES
dc.titleQUIJOTE scientific results - VIII. Diffuse polarized foregrounds from component separation with QUIJOTE-MFIes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1093/mnras/stac3020es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1093/mnras/stac3020
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2023 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Excepto si se señala otra cosa, la licencia del ítem se describe como This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2023 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.