Mostrar el registro sencillo

dc.contributor.authorFernández Manteca, María Gabriela
dc.contributor.authorMartínez Minchero, Marina 
dc.contributor.authorGarcía Escárzaga, Asier
dc.contributor.authorOcampo Sosa, Alain Antonio
dc.contributor.authorMirapeix Serrano, Jesús María 
dc.contributor.authorValdiande Gutiérrez, José Julián 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-02-09T15:45:03Z
dc.date.available2023-02-09T15:45:03Z
dc.date.issued2023-03
dc.identifier.issn0584-8547
dc.identifier.issn1873-3565
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/27669
dc.description.abstractLIBS technique requires the spectroscopic analysis of the light emitted by a laser-induced plasma plume. One challenge of the different approaches to capture the plasma light emission is the significant shot-to-shot variations of the plume inhomogeneities, position, and morphology. This is even more challenging when multichannel CCD spectrometers are used, because the light should be homogeneously divided among multiple capturing optical fibers (typically up to 8 fibers) with stable spectral efficiency for all channels. Otherwise, any further analysis of the atomic emission spectra involving multiple channels, such as line intensity ratios, Boltzmann plots, or calibration-free LIBS, could be compromised by the morphology-dependent spectral artifacts induced by the collection optics. In this work, we assess the performance of several collection optics in terms of overall capturing efficiency and channel-to-channel variations due to changes in plasma morphology. Results clearly show that this could be an issue even with the approaches with the best spatial homogenization, including optical fibers and Köhler optics.es_ES
dc.description.sponsorshipThis work was supported by the R + D project PID2019-107270RBC21 (funded by MCIN/AEI10.13039/501100011033) and by Plan Nacional de I + D + and Instituto de Salud Carlos III (ISCIII), Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0007), CIBERINFEC (CB21/13/00068), CIBER-BBN (BBNGC1601), cofinanced by European Development Regional Fund “A way to achieve Europe”. A. O.-S was financially supported by the Miguel Servet II program (ISCIIICPII17–00011). AGE was supported by the Catalonia Government throughout a Beatriu de Pin´os fellowship (grant number 2020 BP 00240). We thanks Dr. A. Pic´on for providing the pure iron ingot and helpful suggestions to improve the experimental setup.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSpectrochimica Acta - Part B Atomic Spectroscopy, 2023, 201, 106617es_ES
dc.source42º Colloquium Spectroscopicum Internationale, Gijón, España, 2022es_ES
dc.subject.otherLIBS spectroscopyes_ES
dc.subject.otherOptical plasma emissiones_ES
dc.subject.otherMultichannel spectrometeres_ES
dc.subject.otherKöhler opticses_ES
dc.titleComparison of light capturing approaches in Laser-Induced Breakdown Spectroscopy (LIBS) for multichannel spectrometerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sab.2023.106617es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.sab.2023.106617
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International