Mostrar el registro sencillo

dc.contributor.authorChakroun, Ala Eddin
dc.contributor.authorHammami, Chaima
dc.contributor.authorHammami, Ahmed
dc.contributor.authorJuan de Luna, A. M. de 
dc.contributor.authorChaari, Fakher
dc.contributor.authorFernández del Rincón, Alfonso 
dc.contributor.authorViadero Rueda, Fernando 
dc.contributor.authorHaddar, Mohamed
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-02-08T16:59:41Z
dc.date.available2024-10-01T00:46:03Z
dc.date.issued2022-09
dc.identifier.issn0094-114X
dc.identifier.issn1873-3999
dc.identifier.otherDPI2017-85390-Pes_ES
dc.identifier.otherPID2020-116213RB-I00es_ES
dc.identifier.otherPID2020-116572RA-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/27648
dc.description.abstractPolymer-metal gears become increasingly interesting to manufacturers and researchers for their advantages to combine the two material's efficiencies. Despite the variety of studies in the literature, there is a significant drop in the number of studies concerning the Gear Mesh Stiffness (GMS). The variation of the GMS by time has a major influence on the dynamic response of transmission. Therefore, this study proposes to take into consideration the viscoelastic behavior of polymer in order to model effectively the GMS of a gear system. The suggested rheological model is the Generalized Maxwell Model (GMM). It is first used to model the viscoelastic behavior of the plastic material of the pinion. Then, Pole Zero Formulation (PZF) is employed to identify parameters of the proposed model. A numerical simulation is then carried out to illustrate the results of this new approach adopted on a pure Nylon 6,6-steel pinions. The evolution of the GMS is illustrated to highlight the viscoelastic behavior's model presented in this paper. Finally, the influence of the change in the temperature is investigated.es_ES
dc.description.sponsorshipThe authors would like to acknowledge Project DPI2017-85390-P funded by the Spanish Ministry of Economy, Industry, and Competitiveness for supporting this research. Moreover, the authors acknowledge the Projects PID2020-116213RB-I00 and PID2020-116572RA-I00 funded by the Spanish Ministry of Science and Innovation.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMechanism and Machine Theory, 2022, 175, 104934es_ES
dc.subject.otherGear mesh stiffnesses_ES
dc.subject.otherGeneralized Maxwell modeles_ES
dc.subject.otherRecoveryes_ES
dc.subject.otherViscoelastic behaviores_ES
dc.subject.otherSpur geares_ES
dc.subject.otherPole-zero formulationes_ES
dc.titleGear mesh stiffness of polymer-metal spur gear system using generalized Maxwell modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.mechmachtheory.2022.104934es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.mechmachtheory.2022.104934
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license