Mostrar el registro sencillo

dc.contributor.authorMerino García, Iván 
dc.contributor.authorGarcía Silvestro, Gonzalo
dc.contributor.authorHernández Campo, Ignacio 
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-02-03T19:08:03Z
dc.date.available2023-02-03T19:08:03Z
dc.date.issued2023-01
dc.identifier.issn2212-9820
dc.identifier.issn2212-9839
dc.identifier.otherPID2019-104050RA-I00es_ES
dc.identifier.otherPID2020-117586RB-I00es_ES
dc.identifier.otherMAT2016-80438-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/27564
dc.description.abstractMixing TiO2 with Mo2C has recently been proposed to improve the photocatalytic conversion of CO2 to methanol under visible light irradiation, although further efforts are still needed to enhance process performance. In this context, the use of p-type semiconductors (i.e., Cu2O) in co-doping strategies can enhance not only the redistribution of electric charges due to its narrowing bandgap, but also the selectivity of the reaction towards methanol. This work focuses on the development of a continuous visible light-driven CO2 photoconversion to methanol process in an optofluidic microreactor using Cu2O/Mo2C/TiO2 heterostructures. A significant improvement in process performance can be seen under visible light with the heterostructures containing 4 wt% of Cu2O. Superior methanol production rates (36.3 µmol∙g−1∙h−1) with an apparent quantum yield = 0.64% and a reaction selectivity = 0.93 are reached, in comparison with the results achieved at Cu2O-free Mo2C/TiO2 photocatalytic surfaces (11.8 µmol∙g−1∙h−1, 0.21% and 0.92, respectively). This can be adscribed to the role of Cu2O in the selectivity of the reaction towards methanol. The synergetic effect between Cu2O, Mo2C, and TiO2 in the heterostructures may also provoke a more efficient charge separation and transfer, while enhancing the visible light absorption properties of the material and its photocatalytic stability. The maximum methanol rate outperforms most of the values previously reported in slurry batch reactors and evidences the possibility of enhancing the continuous visible light-driven CO2-to-methanol photoconversion process with efficient metal co-doping approaches in optofluidic microreactors.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from Ministerio de Ciencia e Innovación (MCIN) under the projects PID2019-104050RA-I00 and PID2020-117586RB-I00, funded by MCIN/AEI/10.13039/501100011033. G.G. would also like to thank the Canarian Agency for Research, Innovation and Information Society (ACIISI, ProID2021010098), as well as NANOtec, INTech, Cabildo de Tenerife, SEGAI (ULL) for laboratory facilities, and the Laser Spectroscopy and High Pressure Group (ULL) for diffuse reflectance measurements. I.H. also acknowledges the funding by the Spanish Ministry of Economy and Competitiveness, Grant No. MAT2016-80438-P.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of CO2 Utilization, 2023, 67, 102340es_ES
dc.subject.otherContinuous CO2 photoreductiones_ES
dc.subject.otherOptofluidic microreactores_ES
dc.subject.otherMethanoles_ES
dc.subject.otherVisible lightes_ES
dc.subject.otherCu2O/Mo2C/TiO2 heterostructureses_ES
dc.titleAn optofluidic planar microreactor with photoactive Cu2O/Mo2C/TiO2 heterostructures for enhanced visible light-driven CO2 conversion to methanoles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jcou.2022.102340es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jcou.2022.102340
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International