Mostrar el registro sencillo

dc.contributor.authorCorrea Sanz, Marcos Antonio
dc.contributor.authorVillanueva Baró, Javier
dc.contributor.authorPérez López, Jesús Ramón 
dc.contributor.authorBasterrechea Verdeja, José 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-07-29T08:07:41Z
dc.date.available2013-07-29T08:07:41Z
dc.date.issued2005-09
dc.identifier.urihttp://hdl.handle.net/10902/2752
dc.description.abstractGenetic algorithms (GAs) and Particle Swarm Optimization (PSO) are commonly used to solve many optimization and synthesis problems. An important issue facing the user is the selection of their parameters, such as crossover and mutation strategies and rates in GAs, or the population size and boundary conditions in PSO. This paper shows an exhaustive process to obtain those parameters and demonstrates that PSO is more efficient than the real-valued GA when both are applied to linear array synthesis. PSO, with less computational burden and generally fewer lines of code than GAs, turns out to be a more efficent algorithm for the design problem analyzed.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2005 URSI Españaes_ES
dc.sourceURSI 2005, XXIV Simposium Nacional de la Unión Científica Internacional de Radio, Santanderes_ES
dc.titleAplicación de PSO y GAs a la síntesis de agrupaciones lineales de antenases_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo