Enlarged Kuramoto model: Secondary instability and transition to collective chaos
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/27492ISSN: 2470-0045
ISSN: 2470-0053
ISSN: 1539-3755
ISSN: 1550-2376
Registro completo
Mostrar el registro completo DCFecha
2022Derechos
©2022 American Physical Society
Publicado en
Physical Review E, 2022, 105, L042201
Editorial
American Physical Society
Enlace a la publicación
Resumen/Abstract
The emergence of collective synchrony from an incoherent state is a phenomenon essentially described by the Kuramoto model. This canonical model was derived perturbatively, by applying phase reduction to an ensemble of heterogeneous, globally coupled Stuart-Landau oscillators. This derivation neglects nonlinearities in the coupling constant. We show here that a comprehensive analysis requires extending the Kuramoto model up to quadratic order. This “enlarged Kuramoto model” comprises three-body (nonpairwise) interactions, which induce strikingly complex phenomenology at certain parameter values. As the coupling is increased, a secondary instability renders the synchronized state unstable, and subsequent bifurcations lead to collective chaos. An efficient numerical study of the thermodynamic limit, valid for Gaussian heterogeneity, is carried out by means of a Fourier-Hermite decomposition of the oscillator density.
Colecciones a las que pertenece
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]