Mostrar el registro sencillo

dc.contributor.authorRomano Moreno, Eva 
dc.contributor.authorDíaz Hernández, Gabriel 
dc.contributor.authorTomás Sampedro, Antonio
dc.contributor.authorLópez Lara, Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-01-30T12:44:35Z
dc.date.available2023-01-30T12:44:35Z
dc.date.issued2023-03
dc.identifier.issn0378-3839
dc.identifier.issn1872-7379
dc.identifier.otherPID2020-118285RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/27469
dc.description.abstractA new numerical methodology reaching an improved characterization of the historical harbor wave agitation climate is presented in this work. A detailed frequency-direction wave spectrum definition of wave agitation patterns within harbor basins is achieved, providing an in-depth description of the whole multidirectional and multireflective wave patterns occurring as a natural harbor response. This constitutes an advance from the monoparametric/aggregated wave height parameter-based approaches, traditionally used for wave agitation characterization, to a multivariate and disaggregated representation of in-port waves and the multiple wave transformation processes within harbor basins. In addition, the wave agitation spectral type concept is proposed, whereby the wave agitation spectral shapes are classified into representative clusters of the historical wave agitation response in a harbor. A detailed multiannual analysis of the wave agitation response, based on the different in-port spectral wave components, their relation with the outer-harbor forcing waves, and their interactions with the harbor structures, can be achieved with the proposed methodology. This improved harbor wave climate characterization can be especially relevant for port operability and downtime analyses. The methodology is applied and validated in Africa basin (Las Palmas Port, Spain).es_ES
dc.description.sponsorshipThis work was supported by a FPU (Formación de Profesorado Universitario) grant from the Spanish Ministry of Science, Innovation and Universities to the first author (FPU18/03046). This work was also partially funded under the State R&D Program Oriented to the Challenges of the Society (PID2020-118285RB-I00) of the Spanish Ministry of Science, Innovation and Universities.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCoastal Engineering, 2023, 180, 104271es_ES
dc.subject.otherHarbor wave climatees_ES
dc.subject.otherHarbor wave agitationes_ES
dc.subject.otherMultimodal waveses_ES
dc.subject.otherDirectional wave spectraes_ES
dc.subject.otherWave spectral typeses_ES
dc.titleMultimodal harbor wave climate characterization based on wave agitation spectral typeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.coastaleng.2022.104271es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.coastaleng.2022.104271
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International