Mostrar el registro sencillo

dc.contributor.authorKamolov, Azizbek
dc.contributor.authorTurakulov, Zafar
dc.contributor.authorRejabov, Sarvar
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorNorkobilov, Adham
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-01-20T17:27:14Z
dc.date.available2023-01-20T17:27:14Z
dc.date.issued2023-01-19
dc.identifier.issn2077-0375
dc.identifier.urihttps://hdl.handle.net/10902/27345
dc.description.abstractCarbon dioxide (CO2) is the single largest contributor to climate change due to its increased emissions since global industrialization began. Carbon Capture, Storage, and Utilization (CCSU) is regarded as a promising strategy to mitigate climate change, reducing the atmospheric concentration of CO2 from power and industrial activities. Post-combustion carbon capture (PCC) is necessary to implement CCSU into existing facilities without changing the combustion block. In this study, the recent research on various PCC technologies is discussed, along with the membrane technology for PCC, emphasizing the different types of membranes and their gas separation performances. Additionally, an overall comparison of membrane separation technology with respect to other PCC methods is implemented based on six different key parameters?CO2 purity and recovery, technological maturity, scalability, environmental concerns, and capital and operational expenditures. In general, membrane separation is found to be the most competitive technique in conventional absorption as long as the highly-performed membrane materials and the technology itself reach the full commercialization stage. Recent updates on the main characteristics of different flue gas streams and the Technology Readiness Levels (TRL) of each PCC technology are also provided with a brief discussion of their latest progresses.es_ES
dc.description.sponsorshipThis research was partially funded for A.K., Z.T., and S.R. by Erasmus+ KA107 International Credit Mobility (2020-1-ES01-KA107-078199 and 2019-1-ES01-KA107-061847) and the Ministry of Innovational Development of the Republic of Uzbekistan (Rector’s order 2/13).es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMembranes, 2023, 13(2), 130es_ES
dc.subject.otherCO2 capturees_ES
dc.subject.otherPost-combustiones_ES
dc.subject.otherMembrane separationes_ES
dc.subject.otherTRLes_ES
dc.subject.otherDecarbonizationes_ES
dc.subject.otherClimate changees_ES
dc.subject.otherCO2 capture comparisones_ES
dc.titleDecarbonization of power and industrial sectors: the role of membrane processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/membranes13020130
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.