Mostrar el registro sencillo

dc.contributor.authorGonzález Villa, Javier 
dc.contributor.authorCuesta Jiménez, Arturo 
dc.contributor.authorAlvear Portilla, Manuel Daniel 
dc.contributor.authorBalboa Marras, Adriana 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-01-19T12:56:19Z
dc.date.available2023-01-19T12:56:19Z
dc.date.issued2022-08-05
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/10902/27315
dc.description.abstractPredicting and understanding mass evacuations are important factors in disaster management and response. Current modelling approaches are useful for planning but lack of real-time capabilities to help informed decisions as the disaster event evolves. To address this challenge, a real-time Evacuation Management System (EMS) is proposed here, following a stochastic approach and combining classical models of low complexity but high reliability. The EMS computes optimal assembly points and shelters and the related network of evacuation routes using GIS-based traffic, pedestrian and routing models including damaged assets or impassable areas. To test the proper operation performances of the EMS, we conducted a case study for the Gran Canaria wildfirees_ES
dc.description.sponsorshipThis research and APC was funded by the European Union’s H2020 research and innovation programme under grant agreement No. 832576 (ASSISTANCE project).es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceApplied Sciences, 2022, 12(15), 7876es_ES
dc.subject.otherMass evacuationes_ES
dc.subject.otherDisaster managementes_ES
dc.subject.otherEvacuation modellinges_ES
dc.subject.otherHuman behavioures_ES
dc.subject.otherTraffic modellinges_ES
dc.subject.otherRoutinges_ES
dc.subject.otherStochastic modellinges_ES
dc.subject.otherEmergency responsees_ES
dc.titleEvacuation management system for major disasterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/832576/EU/ADAPTED SITUATION AWARENESS TOOLS AND TAILORED TRAINING SCENARIOS FOR INCREASING CAPABILITIES AND ENHANCING THE PROTECTION OF FIRST RESPONDERS/ASSISTANCE/es_ES
dc.identifier.DOI10.3390/app12157876
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.