Mostrar el registro sencillo

dc.contributor.authorFernández Manteca, María Gabriela
dc.contributor.authorOcampo Sosa, Alain Antonio
dc.contributor.authorRuiz de Alegría Puig, Carlos
dc.contributor.authorPía Roiz, María
dc.contributor.authorRodríguez Grande, Jorge
dc.contributor.authorMadrazo, Fidel
dc.contributor.authorCalvo Montes, Jorge
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorFariñas Álvarez, María del Carmen 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2023-01-16T16:06:18Z
dc.date.available2023-01-16T16:06:18Z
dc.date.issued2023-04-05
dc.identifier.issn1386-1425
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/27221
dc.description.abstractOne of the problems that most affect hospitals is infections by pathogenic microorganisms. Rapid identification and adequate, timely treatment can avoid fatal consequences and the development of antibiotic resistance, so it is crucial to use fast, reliable, and not too laborious techniques to obtain quick results. Raman spectroscopy has proven to be a powerful tool for molecular analysis, meeting these requirements better than traditional techniques. In this work, we have used Raman spectroscopy combined with machine learning algorithms to explore the automatic identification of eleven species of the genus Candida, the most common cause of fungal infections worldwide. The Raman spectra were obtained from more than 220 different measurements of dried drops from pure cultures of each Candida species using a Raman Confocal Microscope with a 532 nm laser excitation source. After developing a spectral preprocessing methodology, a study of the quality and variability of the measured spectra at the isolate and species level, and the spectral features contributing to inter-class variations, showed the potential to discriminate between those pathogenic yeasts. Several machine learning and deep learning algorithms were trained using hyperparameter optimization techniques to find the best possible classifier for this spectral data, in terms of accuracy and lowest possible overfitting. We found that a one-dimensional Convolutional Neural Network (1-D CNN) could achieve above 80 % overall accuracy for the eleven classes spectral dataset, with good generalization capabilities.es_ES
dc.description.sponsorshipThis work was supported by the R + D projects INNVAL19/17 (funded by Instituto de Investigación Valdecilla-IDIVAL), PID2019-107270RB-C21 (funded by MCIN/ AEI /10.13039/501100011033) and by Plan Nacional de I + D + and Instituto de Salud Carlos III (ISCIII), Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0007), CIBERINFEC (CB21/13/00068), CIBER-BBN (BBNGC1601), cofinanced by European Development Regional Fund “A way to achieve Europe”. A. A. O.-S was financially supported by the Miguel Servet II program (ISCIII-CPII17-00011).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122270es_ES
dc.sourceColloquium Spectroscopicum Internationale XLII, 2022, Gijónes_ES
dc.subject.otherRaman spectroscopyes_ES
dc.subject.otherCandida identificationes_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherConvolutional neural networkes_ES
dc.subject.otherOverfittinges_ES
dc.titleAutomatic classification of Candida species using Raman spectroscopy and machine learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.saa.2022.122270es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.saa.2022.122270
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International