• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical downscaling of daily temperatures in the NW Iberian Peninsula from global climate models: Validation and future scenarios

    Ver/Abrir
    StatisticalDownscali ... (1.954Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/27090
    DOI: 10.3354/cr00906
    ISSN: 0936-577X
    ISSN: 1616-1572
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Brands, Swen FranzAutoridad Unican; Taboada, J. J.; Cofiño González, Antonio SantiagoAutoridad Unican; Sauter, T.; Schneider, C.
    Fecha
    2011-08
    Derechos
    © Inter-Research 2011 · www.int-res.com. Resale or republication not permitted without written consent of the publisher
    Publicado en
    Climate Research 2011,48(2-3),163-176
    Editorial
    Inter-Research Science Publishing
    Palabras clave
    Statistical downscaling
    Global climate models
    GCM
    Multi-model
    Climate projections
    Uncertainty
    Air temperature
    Extreme events
    Iberian Peninsula
    Resumen/Abstract
    ABSTRACT: We used the analogue method to generate ensemble projections of local daily mean, maximum and minimum air temperatures in the NW Iberian Peninsula until the middle of this century. A 3-step method was followed. (1) The error of the analogue method under optimal conditions was estimated, using air temperatures at 850 hPa and mean sea level pressure from reanalysis data as predictor variables. (2) The method's error under suboptimal conditions was assessed by taking these predictors from control runs of a multi-model, multi-initial-conditions ensemble of global climate models. Neither the predictor data nor the downscaled series were corrected. Under these suboptimal conditions, none of the individual downscaled series could robustly reproduce the cumulative distribution function (CDF) of the observations in any season of the year. However, when the single downscaled series were combined into a multi-model series, CDFs were reliably reconstructed for summer and autumn. (3) Temperature series were downscaled from the ensemble?s scenario runs and compared to observations in the reference period to detect local climate change. In addition to the mean relative warming, it can be shown that the less frequent the event in the reference period, the higher its frequency increase and the broader its uncertainty interval in the scenario period. This tendency is more pronounced for daytime than for night-time heat/warm events, leading to a tripling to quadrupling of the former in summer. The local projections' uncertainty intervals are dominated by model errors rather than by forcing or initial-conditions uncertainties.
    Colecciones a las que pertenece
    • D20 Artículos [468]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España