Mostrar el registro sencillo

dc.contributor.authorRodríguez Martín, Manuel
dc.contributor.authorGonzález Fueyo, José Luis
dc.contributor.authorPisonero Carabias, Javier
dc.contributor.authorLópez Rebollo, Jorge
dc.contributor.authorGonzález Aguilera, Diego
dc.contributor.authorGarcía Martín, Roberto José
dc.contributor.authorMadruga Saavedra, Francisco Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-21T18:22:57Z
dc.date.available2022-12-21T18:22:57Z
dc.date.issued2022-12
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.otherRTI2018-099850-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26972
dc.description.abstractA methodology based on step-heating thermography for predicting the length dimension of small defects in additive manufacturing from temperature data measured on thermal images is proposed. Regression learners were applied with different configurations to predict the length of the defects. These algorithms were trained using large datasets generated with Finite Element Method simulations. The different predictive methods obtained were optimized using Bayesian inference. Using predictive methods generated and based on intrinsic performance results, knowing the material characteristics, the defect length can be predicted from single temperature data in defect and non-defect zone. Thus, the developed algorithms were implemented in a laboratory set-up carried out on ad-hoc manufactured parts of Nylon and polylactic acid which include induced defects with different sizes and thicknesses. Using the trained algorithm, the deviation of the predicted results for the defect size varied between 13% and 37% for PLA and between 13% and 36% for Nylon.es_ES
dc.description.sponsorshipThis research has been funded by Ministry of Science and Innovation (Government of Spain) through the research project titled Fusion of nondestructive technologies and numerical simulation methods for the inspection and monitoring of joints in new materials and additive manufacturing processes (FaTIMA) with code RTI2018-099850-B-I00.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMeasurement, 2022, 205, 112140es_ES
dc.subject.otherThermographyes_ES
dc.subject.otherNon-Destructive Testing (NDT)es_ES
dc.subject.otherQuality controles_ES
dc.subject.otherAdditive manufacturinges_ES
dc.subject.otherMachine learninges_ES
dc.titleStep heating thermography supported by machine learning and simulation for internal defect size measurement in additive manufacturinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.measurement.2022.112140es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.measurement.2022.112140
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International