Mostrar el registro sencillo

dc.contributor.authorGiménez Febrer, Pedro Juan
dc.contributor.authorPagès Zamora, Alba
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-21T18:10:52Z
dc.date.issued2022-10
dc.identifier.issn0165-1684
dc.identifier.issn1872-7557
dc.identifier.otherPID2019-104958RB-C41es_ES
dc.identifier.otherPID2019-104958RB-C43es_ES
dc.identifier.otherRED2018-102668-Tes_ES
dc.identifier.urihttps://hdl.handle.net/10902/26970
dc.description.abstractThis paper deals with the selection of the training dataset in kernel-based methods for function reconstruction, with a focus on kernel ridge regression. A functional analysis is performed which, in the absence of noise, links the optimal sampling distribution to the one minimizing the difference between the kernel matrix and its low-rank Nyström approximation. From this standpoint, a statistical passive sampling approach is derived which uses the leverage scores of the columns of the kernel matrix to design a sampling distribution that minimizes an upper bound of the risk function. The proposed approach constitutes a passive method, able to select the optimal subset of training samples using only information provided by the input set and the kernel, but without needing to know the values of the function to be approximated. Furthermore, the proposed approach is backed up by numerical tests on real datasets.es_ES
dc.description.sponsorshipThis work has been funded by the Ministerio de Ciencia e Innovación (MICINN) of the Spanish Government and by the Agencia Estatal de Investigación (AEI/10.13039/501100011033) and ERDF funds (PID 2019-104958RB-C41/C43, RED2018-102668-T); and by the Catalan Government (2017 SGR 578).es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSignal Processing, 2022, 199, 108603es_ES
dc.subject.otherKernel ridge regressiones_ES
dc.subject.otherLeverage scorees_ES
dc.subject.otherNyström approximationes_ES
dc.subject.otherPassive samplinges_ES
dc.subject.otherReproducing kernel Hilbert spacees_ES
dc.titlePassive sampling in reproducing kernel Hilbert spaces using leverage scoreses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sigpro.2022.108603es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.sigpro.2022.108603
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license