Mostrar el registro sencillo

dc.contributor.authorAngulo Ibáñez, Adrián
dc.contributor.authorPerfecto Irigaray, Maite
dc.contributor.authorMerino García, Iván 
dc.contributor.authorLuengo Ibarra, Naia
dc.contributor.authorMartínez Goitandia, Amaia
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.authorAranzabe Basterrechea, Estíbaliz
dc.contributor.authorBeobide Pacheco, Garikoitz
dc.contributor.authorCastillo García, Óscar
dc.contributor.authorPérez Yáñez, Sonia
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-21T16:28:15Z
dc.date.available2022-12-21T16:28:15Z
dc.date.issued2022-12
dc.identifier.issn2468-6069
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherTED2021-129810B-C22es_ES
dc.identifier.otherPID2019-108028GB-C21es_ES
dc.identifier.otherPID2019- 104050RA-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26969
dc.description.abstractMetal-organic frameworks (MOFs) imply an appealing source of photocatalysts as they combine porosity with tailorable electronic properties and surface chemistry. Herein, we report a series of unprecedented metal-organic aerogels (MOAs) comprised by Ti(IV) oxo-clusters and aromatic dicarboxylic linkers as an alternative to microporous MIL-125 and MIL-125-NH2 MOFs. Discrete titanium oxo-clusters polymerized upon the addition of the dicarboxylic linkers to give rise to a metal-organic gel. Their supercritical drying led to aerogels comprised by nanoscopic particles (ca. 5-10 nm) cross-linked into a meso/macroporous microstructure with surface area ranging from 453 to 617 m2·g-1, which are comparatively lower than the surface area of the microporous counterparts (1336 and 1145 m2·g-1, respectively). However, the meso/macroporous microstructure of MOAs can provide a more fluent diffusion of reagents and products than the intrinsic porosity of MOFs, whose narrower channels are expected to imply a more sluggish mass transport. In fact, the assessment of the continuous visible-light-driven photocatalytic CO2 reduction into methanol shows that MOAs (221-786 [M] mol·g-1·h-1) far exceed not only the performance of their microporous counterparts (49-65 [M]mol·g-1·h-1) but also surpass the production rates provided by up-to-date reported photocatalysts.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from the European Union's Horizon 2020 research and innovation program (grant agreement No.101037428), the Basque Government (KK-2016/ 00095-LISOL IT1291-19 and IT1722-22) and the Spanish Ministry of Science and Innovation (TED2021-129810B-C21 and TED2021- 129810B-C22 funded by MCIN/AEI/10.13039/501100011033 and Next Generation EU/PRTR, PID2019-108028GB-C21 and PID2019- 104050RA-I00 funded by MCIN/AEI/10.13039/501100011033). Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/ EJ, and ESF) is also acknowledged.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMaterials Today Energy, 2022, 30, 101178es_ES
dc.subject.otherMetal-organic frameworkes_ES
dc.subject.otherAerogeles_ES
dc.subject.otherCO2 conversiones_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherGoup 4 metales_ES
dc.titleMetal-organic aerogels based on titanium(IV) for visible-light conducted CO2 photoreduction to alcoholses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.mtener.2022.101178es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.mtener.2022.101178
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International