Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorGrossmann Epper, Ignacio
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-19T17:23:09Z
dc.date.available2022-12-19T17:23:09Z
dc.date.issued2022-11-29
dc.identifier.issn2405-8963
dc.identifier.otherPDC2021-120786-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26958
dc.description.abstractReverse electrodialysis (RED), an emerging electrochemical technology that uses ion-selective membranes to directly draw electricity out from salinity differences between two solutions, i.e., salinity gradient energy (SGE), has the potential to be a clean and steady renewable source to reach a sustainable water and energy supply portfolio. Although RED has made notable advances, full-scale RED progress demands more techno-economic and environmental assessments that consider full process design and operational decision space from module- to system-level. This work presents an optimization model formulated as a Generalized Disjunctive Programming (GDP) problem to define the cost-optimal RED process design for different deployment scenarios. We use a predictive model of the RED stack developed and validated in our research group to fully capture the behavior of the system. The problem addressed is to determine the RED plant's topology and the working conditions for a given design of each RED stack which renders the cost-optimal design for the defined problem and scenario. Our results show that, compared with simulation-based approaches, mathematical programming techniques are an efficient and systematic approach to provide decision-making support in early-stage applied research and to obtain design and operation guidelines for full-scale RED implementation in real scenarios.es_ES
dc.description.sponsorshipProject LIFE19 ENV/ES/000143 funded by the LIFE Programme of the European Union. Grant PDC2021-120786- I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”. Grant PRE2018-086454 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIFAC-PapersOnLine, 2022, 55(31), 154-159es_ES
dc.source14th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS, Kongens Lyngby, Denmark, 2022es_ES
dc.subject.otherRenewable energyes_ES
dc.subject.otherBlue energyes_ES
dc.subject.otherProcess synthesises_ES
dc.subject.otherPyomoes_ES
dc.subject.otherGDPoptes_ES
dc.subject.otherGlobal optimizationes_ES
dc.titleGeneralized disjunctive programming model for optimization of reverse electrodialysis processes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ifacol.2022.10.424es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ifacol.2022.10.424
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International