Mostrar el registro sencillo

dc.contributor.authorBaño Medina, Jorge 
dc.contributor.authorGarcía Manzanas, Rodrigo 
dc.contributor.authorCimadevilla Álvarez, Ezequiel 
dc.contributor.authorFernández Fernández, Jesús (matemático) 
dc.contributor.authorGonzález Abad, José 
dc.contributor.authorCofiño González, Antonio Santiago 
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-19T16:34:28Z
dc.date.available2022-12-19T16:34:28Z
dc.date.issued2022-09-06
dc.identifier.issn1991-959X
dc.identifier.issn1991-9603
dc.identifier.otherPID2020-116595RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26955
dc.description.abstractDeep learning (DL) has recently emerged as an innovative tool to downscale climate variables from large-scale atmospheric fields under the perfect-prognosis (PP) approach. Different convolutional neural networks (CNNs) have been applied under present-day conditions with promising results, but little is known about their suitability for extrapolating future climate change conditions. Here, we analyze this problem from a multi-model perspective, developing and evaluating an ensemble of CNN-based downscaled projections (hereafter DeepESD) for temperature and precipitation over the European EUR-44i (0.5º) domain, based on eight global circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). To our knowledge, this is the first time that CNNs have been used to produce downscaled multi-model ensembles based on the perfect-prognosis approach, allowing us to quantify inter-model uncertainty in climate change signals. The results are compared with those corresponding to an EUR-44 ensemble of regional climate models (RCMs) showing that DeepESD reduces distributional biases in the historical period. Moreover, the resulting climate change signals are broadly comparable to those obtained with the RCMs, with similar spatial structures. As for the uncertainty of the climate change signal (measured on the basis of inter-model spread), DeepESD preserves the uncertainty for temperature and results in a reduced uncertainty for precipitation. To facilitate further studies of this downscaling approach, we follow FAIR principles and make publicly available the code (a Jupyter notebook) and the DeepESD dataset. In particular, DeepESD is published at the Earth System Grid Federation (ESGF), as the first continental-wide PP dataset contributing to CORDEX (EUR-44).es_ES
dc.description.sponsorshipThis research has been supported by the Spanish Government (MCIN/AEI /10.13039/501100011033) through project CORDyS (grant no. PID2020-116595RB-I00).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherCopernicus Publ. para European Geosciences Uniones_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceGeoscientific Model Development, 2022, 15(17), 6747-6758es_ES
dc.titleDownscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116595RB-I00/ES/CONTRIBUCION A LA NUEVA GENERACION DE PROYECCIONES CLIMATICAS REGIONALES DE CORDEX MEDIANTE TECNICAS DINAMICAS Y ESTADISTICAS/es_ES
dc.identifier.DOI10.5194/gmd-15-6747-2022
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International