Mostrar el registro sencillo

dc.contributor.authorAlgorri Genaro, José Francisco 
dc.contributor.authorRoldán Varona, Pablo
dc.contributor.authorFernández Manteca, María Gabriela
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-16T18:49:17Z
dc.date.available2022-12-16T18:49:17Z
dc.date.issued2022-11-16
dc.identifier.issn2079-6374
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26931
dc.description.abstractPhytoplankton is a crucial component for the correct functioning of different ecosystems, climate regulation and carbon reduction. Being at least a quarter of the biomass of the world’s vegetation, they produce approximately 50% of atmospheric O2 and remove nearly a third of the anthropogenic carbon released into the atmosphere through photosynthesis. In addition, they support directly or indirectly all the animals of the ocean and freshwater ecosystems, being the base of the food web. The importance of their measurement and identification has increased in the last years, becoming an essential consideration for marine management. The gold standard process used to identify and quantify phytoplankton is manual sample collection and microscopy-based identification, which is a tedious and time-consuming task and requires highly trained professionals. Microfluidic Lab-on-a-Chip technology represents a potential technical solution for environmental monitoring, for example, in situ quantifying toxic phytoplankton. Its main advantages are miniaturisation, portability, reduced reagent/sample consumption and cost reduction. In particular, photonic microfluidic chips that rely on optical sensing have emerged as powerful tools that can be used to identify and analyse phytoplankton with high specificity, sensitivity and throughput. In this review, we focus on recent advances in photonic microfluidic technologies for phytoplankton research. Different optical properties of phytoplankton, fabrication and sensing technologies will be reviewed. To conclude, current challenges and possible future directions will be discussed.es_ES
dc.description.sponsorshipThis work was supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AIE/10.13039/501100011033. J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva Incorporación grant.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceBiosensors, 2022, 12(11), 1024es_ES
dc.subject.otherPhytoplanktones_ES
dc.subject.otherMicrofluidicses_ES
dc.subject.otherPhotonicses_ES
dc.titlePhotonic microfluidic technologies for phytoplankton researches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/bios12111024
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.