Mostrar el registro sencillo

dc.contributor.authorUsman, Muhammad
dc.contributor.authorGarcía Manzanas, Rodrigo 
dc.contributor.authorNdehedehe, Christopher E.
dc.contributor.authorAhmad, Burhan
dc.contributor.authorAdeyeri, Oluwafemi E.
dc.contributor.authorDudzai, Cornelius
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-16T18:09:24Z
dc.date.available2022-12-16T18:09:24Z
dc.date.issued2022-10-24
dc.identifier.issn2306-5338
dc.identifier.urihttps://hdl.handle.net/10902/26926
dc.description.abstractThis work evaluates the suitability of linear scaling (LS) and empirical quantile mapping (EQM) bias correction methods to generate present and future hydrometeorological variables (precipitation, temperature, and streamflow) over the Chitral River Basin, in the Hindukush region of Pakistan. In particular, LS and EQM are applied to correct the high-resolution statistically downscaled dataset, NEX-GDDP, which comprises 21 state-of-the-art general circulation models (GCMs) from the coupled model intercomparison project phase 5 (CMIP5). Raw and bias-corrected NEX-GDDP simulations are used to force the (previously calibrated and validated) HBV-light hydrological model to generate long-term (up to 2100) streamflow projections over the catchment. Our results indicate that using the raw NEX-GDDP leads to substantial errors (as compared to observations) in the mean and extreme streamflow regimes. Nevertheless, the application of LS and EQM solves these problems, yielding much more realistic and plausible streamflow projections for the XXI century.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceHydrology, 2022, 9(11), 188es_ES
dc.subject.otherStreamflowes_ES
dc.subject.otherHydrological modelinges_ES
dc.subject.otherHBVes_ES
dc.subject.otherBias correctiones_ES
dc.subject.otherLinear scaling (LS)es_ES
dc.subject.otherEmpirical quantile mapping (EQM)es_ES
dc.subject.otherNEX-GDDPes_ES
dc.subject.otherChitral River Basines_ES
dc.subject.otherGCMses_ES
dc.titleOn the benefits of bias correction techniques for streamflow simulation in complex terrain catchments: a case-study for the Chitral River Basin in Pakistanes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/hydrology9110188
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.