Mostrar el registro sencillo

dc.contributor.authorSainz-Aja Guerra, José Adolfo 
dc.contributor.authorFerreño Blanco, Diego 
dc.contributor.authorPombo, Joao
dc.contributor.authorCarrascal Vaquero, Isidro Alfonso 
dc.contributor.authorCasado del Prado, José Antonio 
dc.contributor.authorDiego Cavia, Soraya 
dc.contributor.authorCastro Gonzalez, Jorge 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-12-05T11:35:23Z
dc.date.available2022-12-05T11:35:23Z
dc.date.issued2023-01
dc.identifier.issn0965-9978
dc.identifier.issn1873-5339
dc.identifier.otherPID2021-128031OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26835
dc.description.abstractRigorous and efficient management of the railway infrastructure is crucial to avoid accidents and reduce operation and maintenance costs. This requires in-depth knowledge of the assets, the interaction among them and the effect that each track parameter has on the overall infrastructure performance. In this study, a large set of studies are carried out, on a previously calibrated finite element slab track model, where the relevant track parameters are varied within their usual ranges. The results are then used to train and validate a series of predictive models based on Machine Learning algorithms. This methodology provides greater understanding and enhanced prediction of the behaviour of tracks, which are composed of multiple variables such as the soil/subgrade, supporting layers, sleepers, pads and rails. The study also considers train axle loads and service speeds, which are other key elements that influence the track performance. The results show that the parameters that have greatest influence on the railway infrastructure are the properties of the soil, characteristics of the rail pads and the axle loads. This work can support the implementation of predictive maintenance procedures for railway tracks and the development of innovative technological solutions, providing responses to the industrial needs of reducing costs and contributing to improve the competitiveness of railway transport.es_ES
dc.description.sponsorshipThe authors would like to thank the MCIN/AEI/ 10.13039/ FEDER, UE for financing the project Pry PID2021-128031OB-I00 “Development of a System to Monitor Automatically High- Speed Railway Lines Through Machine Learning and Numerical Simulation Algorithms (SMART- Algorithms).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAdvances in Engineering Software, 2023, 175, 103357es_ES
dc.subject.otherRailway trackses_ES
dc.subject.otherInfrastructure assetses_ES
dc.subject.otherPredictive modelses_ES
dc.subject.otherMachine learning algorithmses_ES
dc.subject.otherMonte Carlo methodes_ES
dc.titleParametric analysis of railway infrastructure for improved performance and lower life-cycle costs using machine learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.advengsoft.2022.103357es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.advengsoft.2022.103357
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International