Mostrar el registro sencillo

dc.contributor.authorSánchez Rodríguez, Antonioes_ES
dc.contributor.authorTirnauca, Cristina es_ES
dc.contributor.authorSalas Gómez, Dianaes_ES
dc.contributor.authorFernández Gorgojo, Marioes_ES
dc.contributor.authorMartínez Rodríguez, Mª Isabeles_ES
dc.contributor.authorSierra Peña, María es_ES
dc.contributor.authorGonzález Aramburu, Isabeles_ES
dc.contributor.authorStan, Diana es_ES
dc.contributor.authorGutiérrez-González, Ángelaes_ES
dc.contributor.authorMeissner Blanco, Johannes Marioes_ES
dc.contributor.authorAndrés-Pacheco, Javieres_ES
dc.contributor.authorRivera-Sánchez, Maríaes_ES
dc.contributor.authorSánchez-Peláez, María Victoriaes_ES
dc.contributor.authorSánchez-Juan, Pascual es_ES
dc.contributor.authorInfante Ceberio, Jon es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-25T16:31:08Z
dc.date.available2022-11-25T16:31:08Z
dc.date.issued2022-05es_ES
dc.identifier.issn1353-8020es_ES
dc.identifier.issn1873-5126es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26628
dc.description.abstractIntroduction There is a need for biomarkers to monitor the earliest phases of Parkinson's disease (PD), especially in premotor stages. Here, we studied whether there are early gait alterations in carriers of the G2019S mutation of LRRK2 that can be detected by means of an inertial sensor system. Methods Twenty-one idiopathic PD patients, 20 LRRK2-G2019S PD, 27 asymptomatic carriers of LRRK2-G2019S mutation (AsG2019S) and 36 controls walked equipped with 16 lightweight inertial sensors in three different experiments: i/normal gait, ii/fast gait and iii/dual-task gait. In the AsG2019S group, DaT-SPECT (123I-ioflupane) with semi-quantitative analysis was carried out. Motor and cognitive performance were evaluated using MDS-UPDRS-III and MoCA scales. We employed neural network techniques to classify individuals based on their walking patterns. Results PD patients and controls showed differences in speed, stride length and arm swing amplitude, variability and asymmetry in all three tasks (p < 0.01). In the AsG2019S group, the only differences were detected during fast walking, with greater step time on the non-dominant side (p < 0.05), lower step/stride time variability (p < 0.01) and lower step time asymmetry (p < 0.01). DaT uptake showed a significant correlation with step time during fast walking on the non-dominant side (r = ?0.52; p < 0.01). The neural network was able to differentiate between AsG2019S and healthy controls with an accuracy rate of 82.5%. Conclusion Our sensor-based analysis did not detect substantial and robust changes in the gait of LRRK2-G2019S asymptomatic mutation carriers. Nonetheless, step or stride time during fast walking, supported by the observed correlation with striatal DaT binding deserves consideration as a potential biomarker in future studies.es_ES
dc.description.sponsorshipThis work was supported by Fondo de Investigaci´on Sanitaria-ISCIII (Grant number PI17/00936) to JI.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceParkinsonism & Related Disorders Volume 98, May 2022, Pages 21-26es_ES
dc.subject.otherParkinson's diseasees_ES
dc.subject.otherLRRK2es_ES
dc.subject.otherGaites_ES
dc.subject.otherSensorses_ES
dc.subject.otherAsymptomatic carrierses_ES
dc.subject.otherG2019S mutationes_ES
dc.subject.otherNeural networkes_ES
dc.titleSensor-based gait analysis in the premotor stage of LRRK2 G2019S-associated Parkinson's diseasees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.parkreldis.2022.03.020es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.parkreldis.2022.03.020es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International