dc.contributor.author | Cano Ortiz, Saúl | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.coverage.spatial | Santander (Cantabria, Spain) | es_ES |
dc.coverage.temporal | From 01/06/2022 to 30/10/2022 | es_ES |
dc.date.accessioned | 2022-11-24T07:55:41Z | |
dc.date.available | 2022-11-24T07:55:41Z | |
dc.date.issued | 2022-11-22 | |
dc.identifier.citation | Cano Ortiz, S. (2022). Mosquitonet. [Dataset]. Versión de 22 de noviembre de 2022. UCrea Repositorio Abierto de la Universidad de Cantabria. | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/26615 | |
dc.description.abstract | Mosquitonet is an open-source pavement distress dataset collected with a low-cost vehicle-mounted system for pavement distress detection through Deep Learning algorithms. There are 7099 images with 13 distress classes, annotated by experts in 12 formats: COCO, PASCAL VOC, YOLO/YOLOv4-v7 PyTorch, TF Object Detection, TFRecord, YOLOv3 Keras, Retinanet Keras and CreateML.
The images were gathered by means of a low-cost, high-resolution and fast-acquisition system, Mosquito. The Mosquito system is an unmanned aerial vehicle mounted on a 3D-printed
structure that is attached to a vehicle using a suction cup system. The Mosquito system provides images and GPS coordinates per image for speeds up to 120 km/h, where its remote
control allows the co-pilot to adjust its parameters in real time for better capture. Annotations for training Deep Learning models were performed manually by pavement experts. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Universidad de Cantabria. Grupo de Investigación de Tecnología de la Construcción (GITECO) | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Mosquitonet | es_ES |
dc.type | info:eu-repo/semantics/dataset | |
dc.rights.accessRights | openAccess | es_ES |