Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.coverage.spatialSantander (Cantabria, Spain)es_ES
dc.coverage.temporalFrom 01/06/2022 to 30/10/2022es_ES
dc.date.accessioned2022-11-24T07:55:41Z
dc.date.available2022-11-24T07:55:41Z
dc.date.issued2022-11-22
dc.identifier.citationCano Ortiz, S. (2022). Mosquitonet. [Dataset]. Versión de 22 de noviembre de 2022. UCrea Repositorio Abierto de la Universidad de Cantabria.es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26615
dc.description.abstractMosquitonet is an open-source pavement distress dataset collected with a low-cost vehicle-mounted system for pavement distress detection through Deep Learning algorithms. There are 7099 images with 13 distress classes, annotated by experts in 12 formats: COCO, PASCAL VOC, YOLO/YOLOv4-v7 PyTorch, TF Object Detection, TFRecord, YOLOv3 Keras, Retinanet Keras and CreateML. The images were gathered by means of a low-cost, high-resolution and fast-acquisition system, Mosquito. The Mosquito system is an unmanned aerial vehicle mounted on a 3D-printed structure that is attached to a vehicle using a suction cup system. The Mosquito system provides images and GPS coordinates per image for speeds up to 120 km/h, where its remote control allows the co-pilot to adjust its parameters in real time for better capture. Annotations for training Deep Learning models were performed manually by pavement experts.es_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Cantabria. Grupo de Investigación de Tecnología de la Construcción (GITECO)es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMosquitonetes_ES
dc.typeinfo:eu-repo/semantics/dataset
dc.rights.accessRightsopenAccesses_ES


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International