dc.contributor.author | Landaluce, Nerea | |
dc.contributor.author | Perfecto Irigaray, Maite | |
dc.contributor.author | Albo Sánchez, Jonathan | |
dc.contributor.author | Beobide Pacheco, Garikoitz | |
dc.contributor.author | Castillo García, Óscar | |
dc.contributor.author | Irabien Gulías, Ángel | |
dc.contributor.author | Luque Arrebola, Antonio | |
dc.contributor.author | San José Méndez, Alba | |
dc.contributor.author | Platero Prats, Ana Eva | |
dc.contributor.author | Pérez Yáñez, Sonia | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2022-11-23T14:14:01Z | |
dc.date.available | 2022-11-23T14:14:01Z | |
dc.date.issued | 2022-05-20 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.other | PID2019-108028GB-C21 | es_ES |
dc.identifier.other | PID2019-104050RA-I00 | es_ES |
dc.identifier.other | RTI2018-096138-A-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/26600 | |
dc.description.abstract | The doping of zirconium based EHU-30 and EHU-30-NH2 metal-organic frameworks with copper(II) yielded a homogeneous distribution of the dopant with a copper/zirconium ratio of 0.04-0.05. The doping mechanism is analysed by chemical analysis, microstructural analysis and pair distribution function (PDF) analysis of synchrotron total scattering data in order to get deeper insight into the local structure. According to these data, the Cu(II) atoms are assembled within the secondary building unit by a transmetalation reaction, contrarily to UiO-66 series in which the post-synthetic metalation of the MOF takes place through chemical anchorage. The resulting materials doubled the overall performance of the parent compounds for the CO2 electroreduction, while retained stable the performance during continuous transformation reaction. | es_ES |
dc.description.sponsorship | Financial support from the European Union Next Generation (EUR2020-112294), the Spanish Ministry of Science and Innovation (PID2019-108028GB-C21, PID2019-104050RA-I00 and RTI2018-096138-A-I00) and Basque Government (IT1291-19) is acknowledged. M.P.-I. thanks a predoctoral fellowship from UPV/EHU (PIF 18/175). A.E.P.-P. and J.A. thank the financial support from the Spanish Ministry of Science and Innovation (“María de Maeztu” Programme for Units of Excellence in R&D: CEX2018-000805-M; Ramón y Cajal fellowships: RYC2018-024328-I and RYC-2015-17080). We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III beamline P02.1. | es_ES |
dc.format.extent | 7 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Scientific Reports, 2022, 12, 8505 | es_ES |
dc.title | Copper(II) invigorated EHU-30 for continuous electroreduction of CO2 into value-added chemicals | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1038/s41598-022-11846-w | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1038/s41598-022-11846-w | |
dc.type.version | publishedVersion | es_ES |