A new asymptotic representation and inversion method for the Student's t distribution
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2022-08Derechos
© Taylor & Francis
Publicado en
Integral Transforms and Special Functions, 2022, 33(8), 597-608
Editorial
Taylor & Francis
Enlace a la publicación
Palabras clave
Incomplete beta function
Asymptotic expansions
Student's-t distribution
Resumen/Abstract
Some special functions are particularly relevant in applied probability and statistics. For example, the incomplete beta function is the cumulative central beta distribution. In this paper, we consider the inversion of the central Student's-t distribution which is a particular case of the central beta distribution. The inversion of this distribution function is useful in hypothesis testing as well as for generating random samples distributed according to the corresponding probability density function. A new asymptotic representation in terms of the complementary error function will be one of the important ingredients in our analysis. As we will show, this asymptotic representation is also useful in the computation of the distribution function. We illustrate the performance of all the obtained approximations with numerical examples.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]