Mostrar el registro sencillo

dc.contributor.authorOrtega Van Vloten, Sara
dc.contributor.authorCagigal Gil, Laura 
dc.contributor.authorRueda Zamora, Ana Cristina 
dc.contributor.authorRipoll Cabarga, Nicolás 
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-18T11:05:21Z
dc.date.available2022-11-18T11:05:21Z
dc.date.issued2022-10
dc.identifier.issn1463-5003
dc.identifier.issn1463-5011
dc.identifier.otherPID2019-107053RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26497
dc.description.abstractPopulated coastlines influenced by tropical cyclone (TC) prone areas call for flood risk hazard assessments, including knowledge on the probability of occurrence of major TC-induced significant wave heights. Due to the scarcity of TC historical records, extreme value analyses often rely on fitting generalized extreme value distribution functions to extrapolate longer return periods. This paper describes a methodology that allows to obtain deterministic estimations of the tail probability distribution using long collections of high-fidelity tracks that reproduce similar historical diversity and frequency trends. Given the large dimensionality of the problem (spatiotemporal variability of track geometry and intensity), we implement a track parameterization to easily identify storms in a parametric space. A hybrid approach significantly reduces computational resources by enabling to narrow the number of non-stationary numerically simulated cases forced with vortex-type wind fields parameterized using the Holland Dynamic Model. The proposed surrogate model, HyTCWaves, is trained with a selected subset of maximum significant wave height (MSWH) spatial fields to which a Principal Component Analysis and interpolation functions are performed. Results show a useful approximation of spatialbased regional extreme value distribution of MSWH induced by TCs. The proposed model is applied to the target location of Majuro atoll.es_ES
dc.description.sponsorshipThis work has been partially funded by the Beach4Cast PID2019-107053RB-I00 project, granted by the Spanish Ministry of Science and Innovation. AR acknowledge the funding from Juan de la Cierva-Incorporación IJC2020-043907-I/ MCIN/AEI/10.13039/501100011033 and “NextGenerationEU”/PRTR .es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOcean Modelling, 2022, 178, 102100es_ES
dc.subject.otherTropical cyclonees_ES
dc.subject.otherHybrid downscalinges_ES
dc.subject.otherSurrogate modeles_ES
dc.subject.otherVortex-type windses_ES
dc.subject.otherExtreme value distributiones_ES
dc.titleHyTCWaves: A Hybrid model for downscaling Tropical Cyclone induced extreme Waves climatees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ocemod.2022.102100es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ocemod.2022.102100
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International