Mostrar el registro sencillo

dc.contributor.authorVadillo Abascal, José Manuel 
dc.contributor.authorDíaz Sainz, Guillermo 
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorGarea Vázquez, Aurora 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-16T16:31:59Z
dc.date.available2022-11-16T16:31:59Z
dc.date.issued2022-08-15
dc.identifier.issn2077-0375
dc.identifier.otherPID2019-108136RB-C31es_ES
dc.identifier.otherPID2020-112845RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26477
dc.description.abstractCarbon Capture Utilization and Storage technologies are essential mitigation options to reach net-zero CO2 emissions. However, this challenge requires the development of sustainable and economic separation technologies. This work presents a novel CO2 capture technology strategy based on non-dispersive CO2 absorption and membrane vacuum regeneration (MVR) technology, and employs two imidazolium ionic liquids (ILs), [emim][Ac] and [emim][MS], with different behavior to absorb CO2. Continuous absorption–desorption experiments were carried out using polypropylene hollow fiber membrane contactors. The results show the highest desorption behavior in the case of [emim][Ac], with a MVR performance efficiency of 92% at 313 K and vacuum pressure of 0.04 bar. On the other hand, the IL [emim][MS] reached an efficiency of 83% under the same conditions. The MVR technology could increase the overall CO2 capture performance by up to 61% for [emim][Ac] and 21% for [emim][MS], which represents an increase of 26% and 9%, respectively. Moreover, adding 30%vol. demonstrates that the process was only favorable by using the physical IL. The results presented here indicate the interest in membrane vacuum regeneration technology based on chemical ILs, but further techno-economic evaluation is needed to ensure the competitiveness of this novel CO2 desorption approach for large-scale application.es_ES
dc.description.sponsorshipThis research was funded by Spanish State Research Agency (AEI), through the projects PID2019-108136RB-C31 and PID2020-112845RB-I00 (AEI/10.13039/501100011033). J.M.V. thanks the Concepción Arenal postgraduate research grant from the University of Cantabria.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMembranes, 2022, 12(8), 785es_ES
dc.subject.otherCarbon dioxide capturees_ES
dc.subject.otherMembrane vacuum regenerationes_ES
dc.subject.otherHollow fiber membrane contactores_ES
dc.subject.otherChemical IL [emim][Ac]es_ES
dc.subject.otherPhysical IL [emim][MS]es_ES
dc.titleChemical and physical ionic liquids in CO2 capture system using membrane vacuum regenerationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/membranes12080785
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.